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Outline of the thesis

The thesis belongs to the field of “geometric numerical integration” (GNI), whose
aim it is to construct and study numerical integration methods for differential equa-
tions that preserve some geometric structure of the underlying system. Many sys-
tems have conserved quantities, e.g. the energy in a conservative mechanical sys-
tem or the symplectic structures of Hamiltonian systems, and numerical methods
that take this into account are often superior to those constructed with the more
classical goal of achieving high order.

An important tool in the study of numerical methods is the Butcher series (B-
series) invented by John Butcher in the 1960s. These are formal series expansions
indexed by rooted trees and have been used extensively for order theory and the
study of structure preservation. The thesis puts particular emphasis on B-series
and their generalization to methods for equations evolving on manifolds, called
Lie–Butcher series (LB-series).

It has become apparent that algebra and combinatorics can bring a lot of insight
into this study. Many of the methods and concepts are inherently algebraic or
combinatoric, and the tools developed in these fields can often be used to great
effect. Several examples of this will be discussed throughout.

The thesis is structured as follows: background material on geometric numerical
integration is collected in Part I. It consists of several chapters: in Chapter 1 we
look at some of the main ideas of geometric numerical integration. The emphasis
is put on B-series, and the analysis of these. Chapter 2 is devoted to differential
equations evolving on manifolds, and the series corresponding to B-series in this
setting. Chapter 3 consists of short summaries of the papers included in Part II.
Part II is the main scientific contribution of the thesis, consisting of reproductions
of three papers on material related to geometric numerical integration.





Part I

Background





Chapter 1

Geometric numerical
integration on vector spaces

In numerical analysis the main objects of study are flows of vector fields, given by
initial value problems of the type∗:

y′(t) = F (y(t)), y(t0) = y0. (1.1)

The function y can be real-valued or vector-valued (giving rise to a system of cou-
pled differential equations). The flow of the differential equation is the map Ψt,F :
Rn → Rn defined by y(t) = Ψt,F (y0).† Note that F (y) = d/dt|t=0Ψt,F (y0). In
many practical settings, for instance many mechanical systems modeling physical
processes, the vector field is Hamiltonian, and such flows have several interesting
geometric properties. We seek to construct good approximations to the exact flow,
where ‘good’ can mean several different things, depending on the context. Some-
times what we want are integrators of high order, other times we need approx-
imations that preserve some qualitative or geometric structure of the underlying
dynamical system. Preserving geometric structure is particularly important when
studying systems over long time intervals. An early illustration of this fact was
made by Wisdom and Holman in [75], where they computed the evolution of the
solar system over a billion-year time period using a symplectic method, making
an energy-error of only 2 × 10−11. Section 1.1 of this thesis focuses on structure
preservation for numerical methods.

As there are several excellent introductions to geometric numerical integration
on Rn we will not go into a detailed study here, but merely describe some of the
main ideas. The book [35] is the standard reference; other introductions can be
found in [54, 45, 5, 53, 64, 69, 71].

The focus of this thesis will be on some of the algebraic and combinatorial
tools of geometric numerical integration, with particular emphasis on the tools we

∗ Non-autonomous differential equations can also be written on this form by adding a component to
the y vector

† Here we assume Lipschitz continuity of F for the flow to exist and be unique.
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will utilize when studying flows on more general manifolds in the next chapter.
Lately, there has been quite a lot of interest in these algebraic aspects of geometric
integration, and this has resulted in both an increased understanding of the field,
and also of its relations to other areas of mathematics.

1.1 Numerical methods and structure-preservation

Consider an initial value problem of the form (1.1):

y′(t) = F (y(t)), y(0) = y0

representing the flow of the (sufficiently smooth) vector field F . A numerical
method for (1.1) generates approximations y1, y2, y3, . . . to the solution y(t) at
various values of t. One of the simplest methods is the (explicit) Euler method. It
computes approximations yn to the values y(nh), where n ∈ N and h is the step
size, using the rule:

yn+1 = yn + hF (yn). (1.2)

This generates a numerical flow Φh approximating the exact flow Ψ of F . The
accuracy of the method can be measured by its order: we say that a one-step
method yn+1 = Φh(yn) has order n if |Φh(y) − Ψh(y)| = O(hn+1) as h → 0.
Another way to put this is in terms of the curve traced out by the numerical flow:
by comparing its Taylor series to the Taylor series for the curve of the exact flow
term by term, we can read off the order of the method. The Taylor series for the
solution y has the form

y(h) = y0 + hF (y0) +
1

2
h2F ′(y0)F (y0) +O(h3),

and we note that the Euler method is of order 1.

Runge–Kutta methods. The Euler method is an example of a Runge–Kutta
method, a class of methods that are very common in applications [36, 8]. A
Runge–Kutta method is a one-step method computing an approximation y1 to y(h)
with y0 as input, as follows:

Definition 1.1. An s-stage Runge–Kutta method for solving the initial value prob-
lem (1.1) is a one-step method given by

Yi =y0 + h

s∑

j=1

aijF (Yj), i = 1, . . . s

y1 =y0 + h
s∑

i=1

biF (Yi),

(1.3)

where bi, aij ∈ R, h is the step size and s ∈ N denotes the number of stages.
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A Runge–Kutta method can be presented as a Butcher tableau, which charac-
terizes the method completely:

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass
b1 . . . bs

Here ci =
∑s

j=1 aij .

Example 1.2. We note that the Euler method is the Runge–Kutta method with
Butcher tableau:

0 0

1

Another well-known example is the explicit midpoint method:

yn+1 = yn + hF

(
yn +

1

2
hF (yn)

)
,

given by:

0 0 0
1/2 1/2 0

0 1

Given any number m, there is a Runge–Kutta method of order m [8]. Veri-
fying this involves expanding the methods into series involving the derivatives of
F , and already at low orders the expressions get quite complicated. However, in
Section 1.2 we shall see that the Runge–Kutta methods are special cases of Butcher
series methods, and that one can find nice descriptions of the order theory and also
structure preservation properties for numerical methods within this framework.

Differential equations and geometric structures. When presented with a
system modeled by a differential equation one will often first try to determine its
qualitative properties: are there any invariants? What kind of geometric structure
does the system have? Structures of interest can be energy and volume preser-
vation, symplectic structure, first integrals, restriction to a particular manifold (as
studied in Chapter 2), etc. Then, when choosing (or designing) a numerical method
for approximating the solution of the differential equation, it might make sense for
the method to share these qualitative features. In that way one has control over
what kind of errors the method introduces, obtaining a method tailor-made to the
problem at hand.

A rich source of problems with geometric structures are the Hamiltonian sys-
tems. Let H : R2n → R be a smooth function. A Hamiltonian vector field is
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a vector field on R2n of the form XH = Ω−1∇H , where Ω is an antisymmetric,
invertible 2n× 2n matrix.‡ The flow of XH is given by

d

dt
z = Ω∇zH(z).

The functionH represents the total energy of the system. Two important properties
of the flow of a Hamiltonian vector field XH is that it is constant along the Hamil-
tonian function H (conservation of energy) and that it preserves a symplectic form
ω onR2n. Using numerical integrators constructed to preserve these properties has
been shown to lead to dramatic improvements in accuracy. For examples of this
phenomenon see e.g. [35, 34, 45] and references therein.

1.2 Trees and Butcher series

Starting with the work of John Butcher in the 1960s and 70s [6, 7] the study of
methods for solving ordinary differential equations has been closely connected
to the combinatorics of rooted trees. Many numerical methods yn+1 = Φh(yn)
(including all Runge–Kutta methods) can be expressed as certain formal series,
named Butcher series by Hairer and Wanner in [37]. By a clever representation of
the terms, the series can be indexed over the set of rooted trees.

Consider the differential equation

y′(x) = F (y(x)). (1.4)

Denote the components of F : Rn → Rn by f i and write

f ij1j2···jk =
∂kf i

∂xj1∂xj2 · · · ∂xjk
. (1.5)

Summing over repeated indices, the first few derivatives of y can be written as:

dyi

dx
= f i

d2yi

dx2
= f ijf

j

d3yi

dx3
= f ijkf

jfk + f ijf
j
kf

k

d4yi

dx4
= f ijf

j
kf

k
l f

l + f ijf
j
klf

kf l + 3f ijkf
j
l f

kf l + f ijklf
jfkf l.

(1.6)

These expressions soon get very complicated, but the structure can be made much
more transparent by observing that the derivatives of F can be associated in a bi-
jective way with rooted trees, an observation already made by Cayley in 1857 [14].
Before giving the exact correspondence between differential equations, rooted trees
and Butcher series, we will take a closer look at trees.

‡ Hamiltonian vector fields can be defined on any symplectic manifold [3].
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Rooted trees. A tree is a connected graph with no cycles

T = { , , , , , , , . . .}.

A rooted tree is a tree with one vertex designated as the root. In the pictorial
representation of trees, the root will always be drawn as the bottom vertex, and the
trees will be ordered from the root to the top. More precisely, a tree τ is a graph
consisting of a set of vertices V (τ) and edgesE(τ) ⊂ V (τ)×V (τ) so that there is
exactly one path connecting any two vertices. A path between vi and vj is a set of
edges {vsl , vtl} so that l = 1, 2, . . . , r, s1 = i, tl = sl+1 and tr = j. This gives a
partial ordering of the tree in terms of paths from the root to the vertices of the tree.
A vertex vi is smaller than another distinct vertex vj , e.g. vi ≺ vj , if the unique
path from from the root to vj goes via vi. A vertex vi is called a leaf if there is no
vertex vj with vi ≺ vj . A child of a vertex vi is a vertex vj with vi ≺ vj so that
there is no vertex vk with vi ≺ vk ≺ vj . The order |τ | of a tree τ is the number of
vertices of the tree. We define a symmetry group on a tree τ as all automorphisms
on the vertices. The order of this group, σ(τ), is called the symmetry of the tree
τ .

A forest of rooted trees is a graph whose connected components are rooted
trees, e.g. ω = τ1 . . . τn. We include the empty tree I, i.e. the graph with no
vertices, in the set F of forests. F can be put in bijection to the set of trees via the
operator B+ : F → T , defined on a forest ω = τ1 . . . τn by connecting the trees to
a new root by addition of edges. For example,

B+( ) = .

This operator can be used to generate all trees recursively from the tree by the
following procedure:

(i) The graph belongs to T

(ii) If τ1, . . . , τn ∈ T then τ = B+(τ1 . . . τn) is in T.

The tree factorial τ ! is given recursively by:

(i) ! = 1

(ii) B+(τ1 . . . τn)! = |B+(τ1 . . . τn)|τ1! . . . τn!.

An important operation on trees is the Butcher product, defined in terms of grafting.

Definition 1.3. The Butcher product τ � ω of a tree τ = B+(τ1 . . . τn) and a
forest ω = ω1 · · ·ωm is given by grafting ω onto the root of τ :

τ � ω = B+(τ1 . . . τn ω1 . . . ωm) (1.7)



10 Geometric numerical integration on vector spaces

Butcher series. The calculations of the derivatives of y′(t) = F (y(t)) per-
formed at the beginning of the section can be written in terms of the elementary
differentials of F .

Definition 1.4. Let F : Rn → Rn be a vector field. The elementary differential
F of F is

F( )(t) = F (y)

F(τ)(t) = F (m)(y)(F(τ1)(y), . . . ,F(τm)(y)),
(1.8)

where F (m) is the m-th derivative of the vector field F and τ = B+(τ1, . . . , τm)
is a rooted tree.

We will discuss another way to write elementary differentials in Section 1.5. With
the notation from Equation (1.5), the first few elementary differentials are shown in
Table (1.1). The vector field F corresponds to the leaves of the tree, the first deriva-
tive F ′ corresponds to a vertex with an edge with one child, the second derivative
F ′′ corresponds to a vertex with two children, etc.

τ F(τ)(y)i

f i

f ijf
j

f ijkf
jfk

f ijf
j
kf

k

f ijklf
jfkf l

f ijkf
jfkl f

l

Table 1.1: Elementary differentials associated to a vector field F with components
f i.

Butcher series are (formal) Taylor expansions of elementary differentials in-
dexed over trees:

Definition 1.5. A Butcher series (B-series) is a (formal) series expansion in a
parameter h:

Bh,F (α) = α(I)F(I) +
∑

τ∈T

h|τ |
α(τ)

σ(τ)
F(τ)

=
∑

τ∈T̃

h|τ |
α(τ)

σ(τ)
F(τ),

(1.9)



1.2 Trees and Butcher series 11

where T̃ = T∪{I}, F is a vector field, α is a function α : T̃ → R, σ(τ) is
the symmetry of τ , h is a real number (representing the step size), and F is the
elementary differential of F , extended to the empty tree I by F(I)(y) = y.

We shall see that these series can be used to represent numerical methods
yn+1 = Φh(yn) approximating the flow of a vector field F , in the sense that the
Taylor series for Φh can be expanded into a B-series: Φh = Bh,F (α). §

By computing the Taylor expansion of the solution to the initial value problem
(1.1) one obtains the following result:

Proposition 1.6 ([35]). The Taylor series for the solution of the differential equa-
tion (1.1) can be written as a B-series:

Bh,F (γ) =
∑

τ∈T̃

h|τ |
γ(τ)

σ(τ)
F(τ), (1.10)

where γ(τ) = 1/τ !. That is, y(t+ h) = Bh,F (γ)(y(t)).

Runge–Kutta methods can also be written as B-series expansions, with coeffi-
cients given by the elementary weights of the method [6].

Definition 1.7 (Elementary weights). Let bi and aij be coefficients of a RK-method
as in Definition 1.1, where i ∈ N. The elementary weight function Φ is defined
on trees as follows:

Φi( ) = ci

Φ( ) =
s∑

j=1

bj

Φi(B
+(τ1, . . . , τk)) =

s∑

j=1

aijΦj(τ1)Φj(τ2) . . .Φj(τk)

Φ(B+(τ1, . . . , τk)) =

s∑

j=1

bjΦj(τ1)Φj(τ2) . . .Φj(τk)

(1.11)

Here i = 1, . . . , s.

For example,

Φ( ) =

s∑

j=1

bjcj , Φ( ) =

s∑

j=1

bjc
2
j , Φ( ) =

s∑

j,k=1

bjajkc
2
k

Theorem 1.8 ([6]). The B-series for a RK-method given by the elementary weights
Φ(τ) is

Bh,F (Φ) =
∑

τ∈T̃

h|τ |
Φ(τ)

σ(τ)
F(τ) (1.12)

§ A numerical method for solving a differential equation is called a B-series method if it can be written
as a B-series.
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Order theory for B-series methods. Once we have the B-series of the exact
solution and the B-series of a numerical method, it is straightforward to compare
the coefficients and read off the order of the method. For Runge–Kutta methods,
we obtain the following result:

Proposition 1.9 ([6]). A Runge–Kutta method given by a B-series with coefficients
Φ(τ) has order n if and only if

Φ(τ) = γ(τ), for all τ ∈ T such that |τ | < n.

B-series methods and structure preservation. The class of B-series
methods includes all Taylor series methods and Runge–Kutta methods. It does not,
however, include all numerical methods, an example being the class of splitting
methods.

It is important to point out that focusing only on B-series methods has its draw-
backs. Besides the fact that the class does not contain all methods, it is also known
that there are certain geometric structures that cannot be preserved by B-series
methods. For example, no B-series method can preserve the volume for all sys-
tems [41]. However, we will be content with this loss of generality and focus ex-
clusively on methods based on B-series in this chapter, and on their generalization
– Lie–Butcher series – in the next.

A case which is particularly well-studied is Hamiltonian vector fields. The
following two theorems serve as prime examples:

Theorem 1.10 ([33]). LetG = Bh,F (α) be a vector field with α(I) = 0, α( ) 6= 0.
Then G is Hamiltonian for all Hamiltonian vector fields F (y) = Ω−1∇H(y) if
and only if

α(τ1 � τ2) + α(τ2 � τ1) = 0 (1.13)

for all τ1, τ2 ∈ T. Here � denotes the Butcher product of Definition 1.3.

Theorem 1.11 ([12]). Consider a numerical method given by a B-series Bh,F (α).
The method is symplectic if and only if

α(τ1 � τ2) + α(τ2 � τ1) = α(τ1)α(τ2) (1.14)

for all τ1, τ2 ∈ T, where α(I) = 0.

The paper [16] gives an overview of what is known about structure preservation
for B-series, including characterizations of the various subsets of trees correspond-
ing to energy-preserving, Hamiltonian and symplectic B-series.
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1.3 Hopf algebras and the composition of Butcher
series

Consider two numerical methods given by Φ1 and Φ2. Using the method Φ1 to
advance a point y0 to a point y1, and then applying the method Φ2 using y1 as
initial point, results in a point y2:

y1 = Φ1(y0), y2 = Φ2(y1).

This is the idea behind composition of numerical methods. In the case where both
methods are given by B-series, Φ1(y1) = B1

h,F (α)(y0), Φ2(ỹ1) = B2
h,F (β)(ỹ0),

the composition method Φ2 ◦ Φ1 is again a B-series: Φ2 ◦ Φ1(y0) = Bh,F (γ)(y0).
This is the Hairer–Wanner theorem from [37]. The coefficient function γ of this
B-series was first studied by John Butcher in [7], where he found that composition
of B-series is a group operation (giving rise to the Butcher group) on the coefficient
functions, and gave expressions for the product, identity and inverse in this group.

In [43, 21] Connes and Kreimer introduced a Hopf algebra of rooted trees
connected to the renormalization procedure in quantum field theory. Later [4] it
was pointed out that a variant of this Hopf algebra is closely related to the Butcher
group. More precisely, the Butcher group is the group of characters in a Hopf
algebra HBCK defined by Connes and Kreimer.

We will describe the Butcher group indirectly by describing the Hopf algebra
HBCK. But first we will present some basic definitions from the theory of Hopf
algebras. For a comprehensive introduction, see [68, 1]. Other excellent references
include [13, 51]. A short introduction can also be found in Paper A, reprinted in
Part II below.

Hopf algebras. Let k be a field of characteristic zero. An algebra A over k is
a k-vector space equipped with a multiplication map µ : A ⊗ A → A and a unit
u : k→ A so that

• µ ◦ (id⊗ µ) = µ ◦ (µ⊗ id) : A⊗A⊗A→ A (associativity)

• µ ◦ (u⊗ id) = µ ◦ (id⊗ u) : k ⊗A ∼= A→ A (unitality)

A coalgebra C over k is the dual notion. It consists of a comultiplication map
∆ : C → C ⊗ C and a counit ε : C → k so that

• (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ : C → C ⊗ C ⊗ C (coassociativity)

• (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ : C → C ⊗ k ∼= C (counitality)

A Hopf algebra is at once an algebra and a coalgebra, and it comes equipped with
an antipode S : H → H . These structures have to satisfy certain compatibility
conditions, written as the following diagrams, where τ denotes the flip operation
τ(h1, h2) = (h2, h1):
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H⊗4 I⊗τ⊗I - H⊗4

H ⊗H

∆⊗∆
6

µ
- H

∆
- H ⊗H

µ⊗µ
?

H ⊗H ε⊗ε- k ⊗ k

H

µ

?

ε
- k

∼=
?

H ⊗H S⊗1 - H ⊗H

H
ε -

∆
-

k
u - H

µ

-

H ⊗H
1⊗S

-

∆ -

H ⊗H
µ

-

The first two diagrams ensure that the coproduct and the counit are both algebra
homomorphisms. The last diagram is best interpreted in terms of the characters in
a Hopf algebra. Let A be a commutative k-algebra, and let L(H,A) denote the set
of linear maps from H to A. An element α ∈ L(H,A) is called a character if
α(x · y) = α(x) · α(y) for all x, y ∈ H , where the product on the left-hand side
is in H , and on the right-hand side in A. The set of characters in L(H,A) form a
group under the convolution product:

φ ∗ ψ = µ ◦ (φ⊗ ψ) ◦∆. (1.15)

The unit is the composition of the unit and the counit in H , e.g. η := u ◦ ε. The
bottom diagram above corresponds to the antipode being the inverse of the identity
under this product, and we have α∗−1 = α ◦ S.

We will also need the concept of infinitesimal characters, which are maps α
in L(H,A) satisfying

α(x · y) = η(x) · α(y) + α(x) · η(y).

The Butcher–Connes–Kreimer Hopf algebra. Composition of B-series is
governed by a certain Hopf algebra HBCK based on the set T of rooted trees, called
the Butcher-Connes-Kreimer Hopf algebra. In the next chapter we will see that a
generalization of this Hopf algebra governs the composition of Lie-Butcher series
(Section 2.2.3).

To describe the BCK Hopf algebra we need to define its structure as a vector
space, an algebra, a coalgebra, and define the antipode. As a R-vector space HBCK

is generated by the set T of rooted trees, and graded by the order (i.e. number
of vertices) of the trees. The algebra structure is that of the symmetric algebra
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S(R{T}). The product is written as (commutative) concatenation of trees (i.e.
disjoint union), giving rise to forests of trees. The unit is the empty tree I.

= , I = I =

The coproduct of HBCK is the map ∆BCK : HBCK → HBCK⊗HBCK determined
recursively by:

∆BCK ◦B+(ω) = B+(ω)⊗ I + (Id⊗B+) ◦∆BCK(ω), (1.16)

where ω is a forest¶. The counit is the map ε : HBCK → R given by ε(I) = 1 and
ε(τ) = 0 if τ 6= I. The coproduct can also be written in a non-recursive manner
using cuttings of trees.

Cutting trees. An admissible cut of a tree τ is a set c ⊂ E(τ) of edges of τ
such that c contains at most one edge from any path from the root to a leaf. The
case c = ∅ is called the empty cut. Let ω denote the forest with vertices V (τ) and
edges E(τ) \ c. We write Rc(τ) for the component of ω containing the root of τ ,
and P c(τ) for the forest consisting of the remaining components. The cut resulting
in P c(τ) = τ and Rc(τ) = I is also admissible, and called the full cut (f.c.).

Theorem 1.12 ([21]). The coproduct in HBCK can be written as

∆BCK(τ) =
∑

c∈Adm(τ)

P c(τ)⊗Rc(τ) (1.17)

Examples of the coproduct can be found in Table 1.2. The antipode can be defined
recursively as S(I) = I and::

S(τ) = −τ −
∑

c∈Adm(τ)\\{∅∪f.c.}
S(P c(τ))Rc(τ) (1.18)

The Hairer–Wanner theorem gives the exact correspondence between HBCK

and composition of B-series:

Theorem 1.13 ([37]). Let B1
h,F (α) and B2

F (β) be two B-series, with coefficients
α, β : T → R. The composition B2

h,F (β) ◦ B1
h,F (α) is again a B-series, and we

have

B2
h,F (β) ◦ B1

h,F (α) = Bh,F (α ? β), (1.19)

where ? denotes convolution in the Hopf algebra HBCK.

¶ Recall that ∆BCK is an algebra morphism and is therefore defined on forests as well as trees, since
∆BCK(τ1τ2) = ∆BCK(τ1)∆BCK(τ2).
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τ ∆BCK(τ)

I I⊗ I
⊗ I + I⊗

⊗ I + ⊗ + I⊗

⊗ I + ⊗ + ⊗ + I⊗

⊗ I + ⊗ + 2 ⊗ + I⊗

⊗ I + ⊗ + ⊗ + ⊗ + I⊗

⊗ I + ⊗ + ⊗ + 2 ⊗ + I⊗

⊗ I + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + I⊗

Table 1.2: Examples of the coproduct ∆BCK in the Hopf algebra HBCK

1.4 Substitution and backward error analysis for
Butcher series

Consider a numerical method Φh used to solve a differential equation of the form

y′ = F (y). (1.20)

The basic idea of backward error analysis of the method Φh is to interpret it as
giving the exact solution of a modified equation:

ỹ′ = F̃h(ỹ). (1.21)

If we can find such an equation, we can use it to study the properties of the nu-
merical method. In other words, the numerical method Φh will be represented by
a modified vector field F̃ , which then can be used to study the method. The idea
is based on work by Wilkinson in the context of algorithms for solving equations
given by matrices [74], and has been explored in several papers [73, 33, 11, 35, 20].
Recurrence formulas for the modified equation was first obtained in [33, 11].

A related notion is the modifying integrators of [20]. The idea is to look for
a vector field F̃h so that the numerical method Φh applied to the flow equation of
F̃h (Equation 1.21) is the exact solution of Equation 1.20.

It turns out that the case where Φh is a B-series method is particularly nice
[19, 20, 9]. The vector fields F̃h can then be written as B-series whose coefficients
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are derived from the coefficients of Φh, and these coefficients can be expressed by
the substitution law for B-series methods.

The substitution law. Let Bh,F (α) and Bh,G(β) be two B-series, where
α(I) = 0. Then Bh,F (α) is a vector field, and we can consider the B-series ob-
tained by using this as the vector field G in the B-series Bh,G(β). This is called
substitution of B-series. The result is given in terms of a bialgebra HCEFM by the
following theorem:

Theorem 1.14 ([9]). Let F be a vector field, α, β linear maps α, β : T → R
where β is an infinitesimal character of HBCK, and α(I) = 0. Then the vector field
(1/h)Bh,F (α) inserted into the B-series Bh,·(β) is again a B-series, given by

Bh,(1/h)Bh,F (α)(β) = Bh,F (α ∗ β), (1.22)

where ∗ denotes convolution of characters in the bialgebra HCEFM .

The bialgebra HCEFM is the symmetric algebra over rooted trees S(T), with
as unit, equipped with a coproduct given by contracting subforests in trees:

∆(τ) =
∑

ω⊆τ
ω ⊗ τ/ω. (1.23)

If τ is a tree then the notation ω ⊂ τ means that ω is a spanning subforest of τ , i.e.
that ω is a collection of subtrees of τ so that each vertex of τ belongs to exactly one
tree in ω. Then τ/ω denotes the tree obtained by contracting each subtree (with
at least two vertices) of τ contained in ω onto a vertex. Some examples of the
coproduct can be found in Table 1.3.

There is a Hopf algebra related to HCEFM, obtained by considering the sym-
metric algebra over the set of rooted trees T′ with at least one edge (e.g. is not
included), and then adding back as the unit for the product. The coproduct is
defined as in Equation (1.23). This makes the associated bialgebra connected, and
it is therefore a Hopf algebra [51].

For details on these constructions, consult [9].

Backward error analysis and modifying integrators. Once Theorem
1.14 is established one can obtain expressions for backward error analysis and
modifying integrators.

Corollary 1.15 (Backward error analysis). Let BG(γ) denote the B-series for the
exact flow of the vector field G, and let BF (α) be a B-series giving a numerical
flow for F . The modified vector field F̃ given by BF̃ (γ) = BF (α) is a B-series
BF (β) with coefficients given by

β ∗ γ = α
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τ ∆CEFM (τ)

⊗

⊗ + ⊗

⊗ + ⊗ + 2 ⊗

⊗ + ⊗ + 2 ⊗

⊗ + ⊗ + 2 ⊗ + 3 ⊗ + ⊗

⊗ + ⊗ + 2 ⊗ + ⊗ + 2 ⊗ + ⊗

⊗ + ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + ⊗

Table 1.3: Examples of the coproduct ∆CEFM in the substitution bialgebra

Corollary 1.16 (Modifying integrators). Let BG(γ) denote the B-series for the
exact flow of the vector field G, and let BF (α) be a B-series giving a numerical
flow for F . The modified vector field F̃ so that BF̃ (α) = BF (γ) is a B-series
BF (β) whose coefficients are given by

β ∗ α = γ

1.5 Pre-Lie Butcher series

The space of vector fields has the structure of a pre-Lie algebra, and in this section
we will see that B-series can be formulated purely in terms of this pre-Lie structure.
This allows us to lift the concept of B-series to the free pre-Lie algebra, giving rise
to pre-Lie B-series [26]. Viewing B-series as objects in the free pre-Lie algebra
gives a clearer focus on the core algebraic structures at play, and it also enables the
application of tools and results from other fields where pre-Lie algebras appear.
Two examples of this phenomenon can be found in [25] (see Remark 1.23) and [9].
We give the basic constructions here because formulating Butcher series in terms
of pre-Lie algebras will find an analogue in the next chapter, where Lie–Butcher
series will be constructed from the so-called D-algebras.

Pre-Lie algebras. The concept of pre-Lie algebras is a relaxation of associative
algebras that still preserve their Lie admissible property. In other words, for an
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associative algebra (A, ∗) antisymmetrization of the product ∗ gives a Lie bracket,
making it a Lie algebra: [a, b] = a∗b−b∗a, and this property also holds for pre-Lie
algebras. Note, however, that not all pre-Lie algebras are associative. They were
first introduced and studied by Vinberg [72], Gerstenhaber [31], and Agrachev and
Gamkrelidze [2], under various names. A nice introduction to pre-Lie algebras can
be found in [52].

Definition 1.17. A (left) pre-Lie algebra‖ (A, .) is a k-vector space A equipped
with an operation . : A⊗A→ A subject to the following relation:

(a . b) . c− a . (b . c) = (b . a) . c− b . (a . c) (1.24)

Example 1.18 (The pre-Lie algebra of vector fields). The space of vector fields
X (M) on a differentiable manifoldM equipped with a flat, torsion-free connection
∇ can be given the structure of a pre-Lie algebra by defining . as F . G = ∇FG.
In the case M = Rn with the standard flat and torsion-free connection we have
that for F =

∑n
i=1 Fi∂i and G =

∑n
j=1Gj∂j ,

F . G =
n∑

i=1




n∑

j=1

Fj(∂jGi)


 ∂i. (1.25)

In the next chapter we will see that allowing for torsion leads to the concept of
D-algebras. See also [48], included as Paper C in Part II of the thesis.

The free pre-Lie algebra. The free pre-Lie algebra has been studied in several
papers, most notably by Chapoton and Livernet in [18], Segal in [65], Agrachev
and Gramkrelidze in [2], Dzhumadil’daev and Löfwall in [23]. These papers give
different bases for the free pre-Lie algebra, and one can choose to work in the
basis most beneficial for the problem at hand. A basis for the free pre-Lie algebra
PL(V ) over a vector space V was described by Chapoton and Livernet in terms of
nonplanar rooted trees [18, 17]:

{
, , , , , , , . . .

}

decorated by elements of V . The pre-Lie product τ1 y τ2 of two rooted trees is
given by grafting: τ1 y τ2 is the sum of all the trees resulting from the addition of
an edge from the root of τ1 to one of the vertices of τ2:

τ1 y τ2 :=
∑

v∈V (τ2)

τ1 ◦v τ2 (1.26)

Here τ1 ◦v τ2 denotes grafting at the vertex v of τ2.

y = , y = + , y = +

‖ Also called a Vinberg, left-symmetric or chronological algebra
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Theorem 1.19 ([18]). PL(V ) is the free pre-Lie algebra on the vector space V :
for any pre-Lie algebra P equipped with a morphism V → P , there is a unique
pre-Lie morphism PL(V )→ P making the following diagram commute:

V - PL(V )

P

∃!
?-

We write PL for the free pre-Lie algebra on a space with only one element.
The free pre-Lie algebra is related to the Hopf algebra HBCK defined in Section

1.3:

Theorem 1.20 ([18]). The universal enveloping algebra U(PL) of the free pre-Lie
algebra on the one-vertex tree, viewed as a Lie algebra, is isomorphic to the dual
of the Butcher–Connes–Kreimer Hopf algebra HBCK.

In fact, the dual of the Butcher–Connes–Kreimer Hopf algebra is isomorphic
to the Grossman-Larson Hopf algebra defined [32]. The isomorphism was proven
in [38].

Pre-Lie Butcher series. Now we can formulate the pre-Lie Butcher series

Definition 1.21. A pre-Lie Butcher series is a formal series in R〈PL〉:

X(α) =
∑

t∈PL

h|t|α(t)t. (1.27)

The classical B-series are recovered by applying the unique pre-Lie morphism as-
sociated to a vector field F :

F : PL→ X (Rn) such that F( ) = F.

This is the elementary differential function of F as defined in 1.4. It is given
recursively by F( ) = F and

F(t) = F (n)(F(τ1), . . . ,F(tn)), (1.28)

if t = B+(τ1, . . . , tn).
B-series in any other pre-Lie algebra (A, .) can be defined in the same way: by

applying the unique pre-Lie algebra morphism F : PL→ A to the series (1.27).

Remark 1.22. SinceF : PL→ X (Rn) is a pre-Lie morphism, the trees associated
to the derivatives of y′(t) = F (y(t)) can be generated by iterated grafting onto the
one-vertex tree:

y ( y ( y . . . ( y ) . . . )) corresponds to
dny

dtn
.

This way of looking at elementary differentials will reappear in a different setting
in Chapter 2.
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Remark 1.23. [Pre-Lie algebras and the Magnus expansion] The formulation of
differential equations in terms of pre-Lie algebras has seen some use in numerical
analysis. In [25] K. Ebrahimi-Fard and D. Manchon rephrased differential equa-
tions of the type X ′(t) = A(t)X(t), where X,A are linear operators in a vector
space, as combinatorial equations in pre-Lie algebras. In this context they obtained
an analogue of the Magnus expansion [50], a series expansion of the solution to the
equation in the magma generated by monomials of pre-Lie elements. In this setting
it becomes apparent that one can use the pre-Lie relation to cancel out some of the
terms in the expansion, leading to a thitherto unknown reduction of the number of
terms in the Magnus expansion





Chapter 2

Geometric numerical
integration on manifolds

Our main objects of study in this chapter are dynamical systems evolving on man-
ifolds:

y′ = F (y), y0 ∈M, F ∈ X (M), (2.1)

where M is a smooth manifold and X (M) denotes the vector fields on M . As in
the previous chapter, the aim is to find good numerical approximations to the flow
exp(tF ) := Ψt,F of (2.1). The study of such systems comprises several different
approaches: One simple way to attack the problem is to embed the manifold in
RN , for some N , and use methods developed for RN to solve the equation. But
then the numerical flow of the method may drift off the manifold, and this can in
some cases cause problems [28, 39, 10, 42].

A more satisfying and often better way is to use methods that are intrinsic to the
manifold, and not rely on any embedding. Consider for instance a system evolving
on the manifold S3. By embedding S3 in R4 one can use numerical methods that
approximate the flow of the system using the basic motions of translations in R4.
Another approach is to use rotations to move around S3: yn+1 = Qnyn where
Qn are orthogonal matrices, i.e. to use the action of the Lie group SO(3) on S4.
This illustrates the intrinsic approach, where we are guaranteed not to drift off
S3. Methods developed for manifolds include the Crouch–Grossman and RKMK-
methods (and variants thereof) [56, 57, 22, 61, 27].

In this chapter we will study a generalization of B-series called Lie–Butcher
series. In analogy to the previous chapter we will look at the composition and sub-
stitution of Lie–Butcher series. The papers reproduced in Part II contains most of
the theory and results in Lie–Butcher theory that is of interest to us here, and there-
fore this chapter will mainly consist of sketches of the main results, with references
to the relevant papers in Part II.
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2.1 Setting the stage: homogeneous manifolds and
differential equations

The flows we would like to approximate evolve on smooth manifolds, and so the
tools of differential geometry play an important role. We will not review the gen-
eral theory of smooth manifolds here, but assume a basic knowledge of differential
geometry; for excellent introductions see e.g. [67, 66]. For a viewpoint oriented
toward geometric numerical integration, see [40]. More precisely, we will be work-
ing with smooth manifolds equipped with transitive actions by Lie groups, so called
homogenous manifolds, where the Lie group provides a way to move around on the
manifold.∗ Because the action is not in general free, the differential equation ex-
pressed on the Lie group is not in general unique. Our presentation of differential
equations on homogeneous manifolds is based on the papers [59, 57, 27].

Definition 2.1. An action of a Lie group G on a smooth manifold M is a group
homomorphism λ : G → Diff(M), g 7→ λg, where Diff(M) is the group of
diffeomorphisms on M . We will mostly write such an action as a map Λ : G ×
M →M .

For convenience of notation we write g for the diffeomorphism λg, and also g ·m
for λg(m). The orbit through a point p ∈M is the setG ·p = λG(p). The action is
called transitive if the manifold M is a single G-orbit. That is, if for all p, q ∈M
there is a g ∈ G so that p = g · q. A manifold equipped with a transitive action
by a Lie group G is called a homogeneous manifold. A consequence of this is
that M is diffeomorphic to the right cosets G/Gx of G, where Gx is the closed Lie
subgroup of isotropies, Gx = {g ∈ G | gx = x} (the point stabilizer): the smooth
manifold structure ofG/Gx comes from the quotient map, and the diffeomorphism
F : G/Gx →M is given by F (gGx) = g ·x. The groupGx is called the subgroup
of isotropies because if x′ is another point in G, then Gx and Gx′ are conjugate,
and therefore isomorphic.

Important examples of homogeneous manifolds are the spheres Sn = SO(n+
1)/SO(n). A (somewhat degenerate) example is the homogeneous manifold
(Rn, (Rn,+)). Here the action of Rn on itself is given by translations. The the-
ory developed for homogeneous manifolds in this chapter will reduce to the theory
developed in the previous chapter when applied to this particular case.

Actions by Lie groups on manifolds can be associated to actions by Lie alge-
bras. Let Λ : G ×M → M be an action of G on M . The associated Lie algebra
action λ∗ : g→ X (M) of g on M is the homomorphism defined by:

λ∗(v)(p) =
d

dt

∣∣∣∣
t=0

Λ(exp(tV ), p). (2.2)

∗ Note that other manifolds with local actions could also be considered, but to to avoid unnecessary
complications we elect to only consider homogeneous manifolds.
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We sometimes write v·y for the element λ∗(v)(y) ∈ TyM . The Lie–Palais theorem
[62] ensures us that as long as the Lie group G is simply connected, then every
action by g comes from an action by G. However, if the Lie group is not simply
connected, then we can only lift the g-action to the universal covering group of G.
If F ∈ X (M) is a vector field, then an element v so that λ∗(v) = F is called an
infinitesimal generator for F .

Remark 2.2. In some cases it makes sense to use other maps φ : g→ G (satisfying
φ(0) = e and φ′(0) = V ) besides the exponential map to construct maps g →
X (M) as in Equation (2.2). An overview of various maps of this kind, and their
usefulness, can be found in [27].

Differential equations on homogeneous manifolds. Consider the differ-
ential equation on a homogeneous manifold (M,G, λ):

y′ = F (y), y0 ∈M, F : M → TM. (2.3)

The solution is the flow Ψt,F = exp(tF ) of the vector field F . The vector field can
be written in terms of its infinitesimal generator as F = λ∗(v) : M → TM for an
element v ∈ g, and the transitivity of the action also allows us to construct a map
f : M → g so that

F (y) = λ∗(f(y))(y) = f(y) · y (2.4)

Note that as long as the action is not free, this f is not unique: if f : M → g is
such a map, then f + i : M → g, where i(p) is in the isotropy subalgebra gp of g,
is another map of the same type. This choice of isotropy class can be helpful when
constructing numerical integrators [46].

The differential equation (2.3) can be written as:

y′ = f(y) · y, where f : M → g, (2.5)

and this is the type of differential equation we will consider in this chapter. Note
that in the classical case of (Rn, (Rn,+)), this equation reduces to the ordinary
differential equation (2.3). We also note that the class contains the equations for-
mulated in terms of frames:

Remark 2.3 (Frames and differential equations). In the literature for numerical
integration of differential equations on manifolds the equations are often simplified
by using a frame on the manifold [61, 60, 15]. A frame is a set of vector fields {Ei}
that at each point on the manifold spans the tangent space at that point, so that any
vector field F can be written as F =

∑
i fiEi. The flow equation (2.3) for F can

then be written as

y′ =
∑

i

fi(y)Ei(y), where fi : M → R are smooth. (2.6)

If we write g ⊂ X (M) for the Lie subalgebra generated by the vector fields {Ei},
and let λ∗ : g → Diff(M) be as in (2.2), we see that Equation (2.6) is a special
case of Equation (2.5), with f : M → g defined by f(y) =

∑
i fi(y)Ei.
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Remark 2.4. In [27], K. Engø formulated the general operation of ‘moving’ differ-
ential equations between manifolds using equivariance of actions and relatedness
of vector fields. In particular, every differential equation of the form (2.5) was
shown to be equivalent to a differential equation on g. The following diagram from
[27] summarizes this:

Tg
T (exp)- TG

T (λ·(p))- TM

g

6

exp
- G

6

λ·(p)
- M

λ∗(v)(p)
6

In other words, the differential equation on a homogeneous manifold (M,G) is
moved to the Lie group G (the middle vertical arrow) and then to the Lie algebra
g (the first vertical arrow). As before, the exponential map exp : g → G can in
some cases be replaced by other maps. The construction of the vertical arrows
can be found in [27]. This is the result exploited in the so-called RKMK methods
[55, 56, 57].

2.2 Trees, D-algebras and Lie–Butcher series

In Chapter 1 we observed that ordinary differential equations in Rn are related to
rooted trees, and that the formal series indexed over trees we used in our study
are related to pre-Lie algebras. In the more general case of differential equations
on manifolds, we will see that forests of ordered rooted trees and D-algebras play
these roles. We will sketch the construction of ordered rooted trees, D-algebras and
Lie–Butcher series. Details can be found in [58] or [47] (Paper A in Part II below).

Ordered trees and D-algebras. The set

OT = { , , , , , , , , . . .}.

of ordered rooted trees consists of all rooted trees (Section 1.2). Unlike the set
T ⊂ OT of rooted trees, we do not identify trees who differ in the order of their
branches. In other words, an ordered rooted tree is a tree τ together with a chosen
order of the branches connected to each vertex of τ . Write OF for the set of
ordered words (including the empty word) of elements from OT, called the set of
ordered forests. Let N = R〈OT〉 be the noncommutative polynomials over OT.
The linear dual N∗ := Hom(N,R) is identified with the infinite combinations of
words, and we write 〈·, ·〉 for the pairing making words in OT orthogonal. That is,
〈ω1, ω2〉 = δω1,ω2 , for all ω1, ω2 ∈ OF.

It is sometimes convenient to allow the trees to be decorated by a set C, often
called the set of colors. This is done via a map from the vertices of the tree to the
set C. We write OTC and OFC for the set of trees and forests colored by C.
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A basic operation on N is the left grafting product · y · : N⊗N → N of
[58]. It is defined recursively by

I y ω = ω

ω y I = 0

ω y = B+(ω),

τ y ω1ω2 = (τ y ω1)ω2 + ω1(τ y ω2)

(τω) y ω1 = τ y (ω y ω1)− (τ y ω) y ω1,

(2.7)

where τ is a tree and ω1, ω2 are forests. If we write (·)[·] for y, then concatenation
and grafting gives N the structure of a D-algebra, as defined in [58] (see also [47,
49, 48]):

Definition 2.5. Let A be a unital associative algebra with product f, g 7→ fg, unit
I and equipped with a non-associative composition (.)[.] : A ⊗ A → A such that
I[g] = g for all g ∈ A. Write D(A) for the set of all f ∈ A such that f [·] is a
derivation:

D(A) = {f ∈ A | f [gh] = (f [g])h+ g(f [h]) for all g, h ∈ A}.

Then A is called a D-algebra if for any derivation f ∈ D(A) and any g ∈ A we
have

(i) g[f ] ∈ D(A)

(ii) f [g[h]] = (fg)[h] + (f [g])[h].

In [58] it was also shown that the D-algebra N is the free D-algebra:

Theorem 2.6 ([58]). The vector space N = k〈OTC〉 is the free D-algebra over C.
That is, for any D-algebra A and any map ν : C → D(A) there exists a unique
D-algebra homomorphism Fν : N → A such that Fν(c) = ν(c) for all c ∈ C.

C ⊂ - N

D(A)

ν
?

⊂ - A

∃ ! Fν
?

A D-algebra homomorphism between two D-algebras A and B is an algebra
morphism F : A→ B such that F (D(A)) ⊂ D(B), and F (a[b]) = F (a)[F (b)].

This theorem enables us to define elementary differentials and Lie–Butcher
series by applying it to the case where A is the D-algebra U(g) of differential
operators. Recall that a vector field (or, in other words, a first-order differential
operator) F on a homogeneous manifold (M,G) can be represented as a func-
tion f : M → g. Similarly, all higher order differential operators on M can be
represented as functions from M to the universal enveloping algebra U(g) of g.
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Theorem 2.7 ([58]). Let (M,G) be a homogeneous manifold and let g denote
the Lie algebra of G. Let U(g) denote the universal enveloping algebra of g,
consisting of all higher order differential operators on M , and extend its structure
to C∞(M,U(g)) =: U(g)M via

F [G](p) := (F (p)[G])(p), FG(p) := F (p)G(p). (2.8)

These two operations give U(g)M the structure of a D-algebra.

Remark: post-Lie algebras. In [48] (reproduced as Paper C in Part II) the au-
thor and H. Munthe-Kaas developed a more refined view of D-algebras, where the
D-algebras are enveloping algebras of post-Lie algebras (post-Lie algebras were
also introduced independently by Vallette in [70]). This point of view is currently
being studied further in an ongoing project [24], where the operad behind post-Lie
and D-algebras (also called post associative algebras) is explored.

Definition 2.8. A post-Lie algebra is a Lie algebra (A, [·, ·]) equipped with a non-
commutative, non-associative product . : A⊗A→ A satisfying:

x . [y, z] = [x . y, z] + [y, x . z] (derivation property) (2.9)

[x, y] . z = a.(x, y, z)− a.(y, x, z), (2.10)

where a.(x, y, z) is the associator a.(x, y, z) = x . (y . z)− (x . y) . z.

In [48] it is shown that the free Lie algebra over rooted trees colored by a set C
is the free post-Lie algebra, and that its universal enveloping algebra is the free
D-algebra defined above. Notice that relation (2.10) implies that a pre-Lie algebra
(Section 1.5) is a post-Lie algebra with vanishing bracket.

Lie–Butcher series

Analogous to the B-series of Chapter 1, the Lie–Butcher series can be used to
represent flows – numerical or exact – on homogeneous manifolds. To achieve this
one combines the concept of Lie series in free Lie algebras with ideas from the
theory of B-series. An exposition of free Lie algebras and Lie series can be found
in the book [63] by Reutenauer.

The free Lie algebra FLA(A) over a set A of generators is the closure of the
generators under commutation and linear combination. In particular, we have the
free Lie algebra FLA(OT) over the set of ordered rooted trees. A Lie series is a
series expansion:

S =
∑

n≥0

Sn, (2.11)

where each homogeneous component is an element of FLA(OT), i.e. the Sn’s are
Lie polynomials.
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A Lie series of particular interest to us appears when computing the pullback of
functions along flows of vector fields on homogeneous manifolds. Let F ∈ X (M)
be a vector field with flow Φt,F , and ψ : M → g a function. Then

d

dt

∣∣∣∣
t=0

Φ∗t,Fψ = F [ψ]. (2.12)

The Taylor expansion of Φ∗t,Fψ around 0 therefore takes the form of a Lie series

Φ∗t,Fψ =
∞∑

n=0

tn

n!

(
∂n

∂tn

∣∣∣∣
t=0

Φ∗t,Fψ
)

= ψ + tF [ψ] +
t2

2!
F [F [ψ]] +

t3

3!
F [F [F [ψ]]] + · · · .

(2.13)

Bell polynomials. The higher order derivatives of the pullbacks can be written
in terms of noncommutative Bell polynomials [47]:

Definition 2.9. Let D = R〈I〉 be the free associative algebra over an alphabet
I = {di}, and let ∂ : D → D denote the derivation given by ∂(di) = di+1. The
noncommutative Bell polynomials Bn = Bn(d1, . . . , dn) ∈ R〈I〉 are defined by
the recursion

B0 = I
Bn = (d1 + ∂)Bn−1, n > 0.

(2.14)

Theorem 2.10 ([55, 47]). The derivatives of the pullback of a function ψ along the
time-dependent flow Φt,F is:

dn

dtn
Φ∗t,Fψ = Bn(F )[ψ], (2.15)

where Bn(Ft) is the image of the Bell polynomials Bn under the homomorphism
given by di 7→ F (i−1) ((i− 1)th derivative). In particular

dn

dtn

∣∣∣∣
t=0

Φ∗t,Ftψ = Bn(F1, . . . , Fn)[ψ] =: Bn(Fi)[ψ], (2.16)

where Fn+1 = dn/dtn|t=0F .

This result allows us to rewrite the Lie series (2.13) as the following expression
[55]:

Φ∗t,Fψ =

∞∑

n=0

Fn[ψ]
tn

n!
=

∞∑

n=0

Bn(Fi)[ψ]
tn

n!
, (2.17)

where Fn iterated application of F , as in Equation (2.13).
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Remark 2.11. It is well known that the classical Bell polynomials can be defined
in terms of determinants, and it seems like the non-commutative Bell polynomials
can be defined in the same way, only now in terms of a non-commutative analog
of the determinant: the quasi-determinants of Gelfand and Retakh ([30], see also
[29]). For example, we have

det




x1 −1 0

(
3−1

1

)
x2 x1 −1

(
3−1

2

)
x3

(
3−2

1

)
x2 x1




= det




x1 −1 0

2x2 x1 −1

x3 x2 x1




= x3
1 + 2x1x2 + x2x1 + x3

= B3,

where det denotes the quasi-determinant. The significance of this result is at the
present time unexplored.

The Lie–series (2.13) can also be written as the Lie–Butcher series for the exact
flow.

Lie–Butcher series. The general Lie–Butcher series Bf (α) are constructed to
represent flows given by y0 7→ yt = Ψt(y0):

Ψt(y(t)) = Bf (α)[Ψt](y0). (2.18)

Before giving the definition of Lie–Butcher series we need to define the elementary
differentials of a vector field F :

Definition 2.12. Let Ff : N → U(g)M be the unique D-algebra morphism given
by Theorem 2.6 by associating to a vector field f : M → g. This is called the
elementary differentials of the vector field f .

Note that Ff : N→ U(g)M is given recursively by

(i) Ff (I) = I

(ii) Ff (B+(ω)) = Ff (ω)[f ]

(iii) Ff (ω1ω2) = Ff (ω1)Ff (ω2)

The general Lie–Butcher series are expansions of elementary differentials indexed
over ordered rooted forests.
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Definition 2.13. A Lie–Butcher series (LB-series) is a formal series expansion in
U(g)M :

Bf (α) =
∑

ω∈OF

h|ω|α(ω)Ff (ω), (2.19)

where α : N→ R.

It turns out [47] that the Lie series (2.13) can be written as

Φ∗t,fψ =
∑

ω∈OT

γ(ω)Ff (ω), (2.20)

where γ are the coefficients appearing when iteratively (left) grafting onto . This
is the Lie–Butcher series for the exact flow.

See [55, 56, 61, 60, 58], Paper A [47] and Paper B [49] in Part II for examples
of and details about LB-series and numerical flows.

2.3 Composition of Lie–Butcher series

We would like to understand the result of composing LB-series methods in a sim-
ilar way as we did for B-series methods in Section 1.3. The basic problem is to
determine whether the method Φ resulting from composing two methods Φ2 ◦Φ1–
both given by LB-series–is another LB-series, and in that case, what its coefficients
are. Just as there is a Hopf algebra governing composition of B-series (the BCK
Hopf algebra discussed in Section 1.3), there is a Hopf algebra HMKW behind the
composition of LB-series. This Hopf algebra was first studied in [58], where its
properties and its relation to the BCK Hopf algebra was explored. An introduction
can also be found in [47], reproduced as Paper A in Part II.

The Hopf algebra of composition. As a vector space HMKW is spanned by
the set of ordered forests: HMKW = R〈OT〉. The product is given by shuffling:

I� ω = ω = ω� I
(τ1ω1)� (τ2ω2) = τ1(ω1 � τ2ω2) + τ2(τ1ω1 � ω2)

(2.21)

where τ1, τ2 ∈ OT and ω1, ω2 ∈ OF. The coproduct is given recursively by
∆N (I) = I⊗ I and

∆N (ωτ) = ωτ ⊗ I + ∆N (ω)� · (I ⊗B+
i )∆N (B−(τ)), (2.22)

where τ ∈ OT, ω ∈ OF. Here� · : N⊗4 → N⊗N denotes shuffle on the left and
concatenation on the right: (ω1 ⊗ ω2)� · (ω3 ⊗ ω4) = (ω1 � ω3)⊗ (ω2ω4).

The coproduct can also be written in terms of left admissible cuts, analogous
to the coproduct in HBCK (Theorem 1.12):
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Theorem 2.14 ([58]). The coproduct in HMKW can be written as

∆MKW (ω) =
∑

c∈FLAC(ω)

P c(ω)⊗Rc(ω), (2.23)

where ω is a forest in OT.

A left admissible cut differs from the admissible cuts defined in Section 1.3 (see
[58]): an elementary cut c of a tree τ is a selection of edges to be removed from τ ,
chosen in such a way that if an edge e is removed, then all the branches on the same
level and to the left of e must also be removed. A cut results in a collection of trees
concatenated together to form a forest P cel(τ) (the pruned part), and a remaining
tree Rcel(τ), containing the root. A left admissible cut c = {c1, . . . , cn} on τ is a
collection of such elementary cuts, with the property that any path from the root
to any vertex crosses at most one cut ci. The pruned parts from each cut together
form the pruned part P c(τ) of the left admissible cut, where the parts coming from
different cuts are shuffled together. We also include the full cut and the empty cut,
which results in P c(τ) = τ and P c(τ) = I, respectively. The cutting operation is
extended to forests ω as follows: apply the B+ operation to ω to get a tree, cut this
without using the cut removing all the edges coming out of the root, and, finally,
remove the added root from Rc(ω).

See Table 2.1 for some examples of the coproduct ∆MKW , and see [58] or [47]
(reproduced as Paper A in Part II below) for further examples and other properties
of HMKW.

ω ∆MKW (ω)

I I⊗ I
⊗ I + I⊗
⊗ I + ⊗ + I⊗

⊗ I + ⊗ + I⊗

⊗ I + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗ I + ⊗ + ⊗ + I⊗

Table 2.1: Examples of the coproduct ∆MKW

The main result linking HMKW to LB-series is the following, which is an ana-
log of the Hairer-Wanner theorem (Theorem 1.13) for B-series:

Theorem 2.15 ([58]). The composition of two LB-series is again a LB-series:

Bf (α)[Bf (β)] = Bf (α ∗ β), (2.24)

where ∗ is the convolution product in HMKW.
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2.4 Substitution and backward error analysis for
Lie–Butcher series

In [49] (reproduced as Paper B in Part II) the substitution law for LB-series meth-
ods was developed, culminating in a formula that can be used to calculate the mod-
ified vector field used in backward error analysis.

The substitution law. The basic idea is as for B-series (Section 1.4): We con-
sider substituting a LB-series into another LB-series, e.g. BBf (β)(α), and the ques-
tion is as before: is this a LB-series, and in that case, which one? The result is
given in terms of the substitution law:

Theorem 2.16 ([49]). The substitution law defined in Definition 2.17 corresponds
to the substitution of LB-series in the sense that

BBf (β)(α) = Bf (β ? α)

The substitution law is defined by using the freeness of the D-algebra N =
R〈OT〉 (Theorem 2.6):

Definition 2.17. For any map α : C →
D(N) Theorem 2.6 implies that there a
unique D-algebra homomorphism α∗ :
N → N such that α(c) = α ∗ c for all
c ∈ C. This homomorphism is called
α-substitution.

C ⊂ - N

D(N)

α
?

⊂ - N

α∗
?

Calculating the substitution law. To obtain a formula for the substitution
law, we consider the dual αt∗ of α-substitution:

〈α ∗ β, ω〉 = 〈β, αt∗(ω)〉, (2.25)

and we call it the substitution character. The dual pairing 〈·, ·〉 is the one induced
by requiring that all forests in OT are orthogonal, and we may write 〈α, ω〉 =
α(ω). The map αt∗ is a character for the shuffle product [49, Proposition 3.8]:
αt∗(ω1 � ω2) = αt∗(ω1)� αt∗(ω2).

The formula for the substitution law is based on the cutting of trees as in the
coproduct ∆MKW . More specifically, it is based on the dual of grafting, called
pruning:

Pν(ω) =
∑

c∈LAC(ω)

〈ν, P c(ω)〉Rc(ω). (2.26)

Here the sum is over the left admissible cuts, but as opposed to the cuts in the
formula (2.23) for ∆MKW , the full cut is not included.

In [49] the following inductive formula for αt∗ was obtained:



34 Geometric numerical integration on manifolds

Theorem 2.18 ([49]). We have

αt∗(ω) =
∑

(ω)∈∆C

∑

c∈LAC(ω(2))

αt∗(ω(1)) B+
(
αt∗(P

c(ω(2)))
)
α(Rc(ω(2))),

if ω 6= 1 and αt∗(I) = I. Here ∆C denotes the deconcatenation coproduct.

By introducing a magmatic operation µ× on N, given by µ×(ω1, ω2) =
ω1 B+(ω2)†, this can also be written as a composition of operators:

αt∗ = µ ◦ (µ× ⊗ I) ◦ (αt∗ ⊗ αt∗ ⊗ a) ◦ (I ⊗∆′MKW ) ◦∆C . (2.27)

Here ∆C is deconcatenation, ∆′MKW denotes the coproduct in (2.23) with the full
cut removed, and µ denotes concatenation.

Some examples of the substitution character can be found in Table 2.2. Many
more examples and details can be found in [49] (Paper B below).

ω αt∗(ω)

I I
α( )

α( )2

α( ) + α( )2

α( ) + α( )α( ) + α( )3

α( ) + α( )α( ) + α( )3

Table 2.2: Examples of the substitution character αt∗

Remark 2.19. One would like the substitution law ∗ to be a convolution product in
a Hopf or bialgebra, analogous to the substitution of B-series (Theorem 1.14). One
possible way to achieve this is by obtaining a concrete description of the operations
in the post-Lie operad. In that case one can follow the procedure in [9], which,
roughly, is the following: The post-Lie operad has a pre-Lie structure (general
phenomenon for augmented operads), there is an associated Lie algebra structure,
its universal enveloping algebra is a Hopf algebra, and its dual is the Hopf algebra
for the substitution law. This is a project currently under investigation [24].

† This magmatic operation µ× allows us to rewrite all the basic operations of Lie–Butcher theory in a
simpler way, a way which is also convenient for implementation. See Paper B ([49]) for details.
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Summary of Paper A

Hopf algebras of formal diffeomorphisms and numerical integration on
manifolds

A. Lundervold and H.Z. Munthe-Kaas

Published in Contemporary Mathematics, volume 539, 2011

This paper explores several of the algebraic structures appearing in the study of Lie
group integrators: Hopf algebras, Lie series, Lie-Butcher series, Lie idempotents,
a noncommutative Faà di Bruno algebra and noncommutative Bell polynomials. It
serves both as an introduction to relevant algebraic concepts for numerical analysts,
and as an introduction to numerical analysis for algebraists. It is partly a review and
partly a research paper. Some of the results in the paper can be found elsewhere in
the literature; others are original.

Among other things, the paper gives a purely algebraic way to understand Lie–
Butcher theory, in the spirit of the paper [58] by H. Munthe-Kaas and W. Wright.
The theory is formulated in terms of the ordered rooted trees OT, together with a
few basic operations making it a D-algebra (Section 2.2, Part I). Various represen-
tation of flows written in terms of Lie–Butcher series are discussed, and we find
algebraic methods for converting between the representations. This involves Lie
idempotents and the non-commutative Bell polynomials (slightly reformulated to
give an operator we call Q):

Flows y0 7→ y(t) = Ψt(y0) on a homogeneous manifoldM can be represented
by LB-series in several different ways:

1. In terms of pullback series: Find a character α in HMKW such that

Ψ(y(t)) = Bt(α)(y0)[Ψ] for any Ψ ∈ U(g)M . (3.1)

2. In terms of an autonomous differential equation: Find an infinitesimal char-
acter β in HMKW such that y(t) solves

y′(t) = Bt(β)(y(t)). (3.2)

3. In terms of a non-autonomous equation of Lie type: Find an infinitesimal
character γ in Hsh such that y(t) solves

y′(t) =

(
∂

∂t
Bt(γ)(y0)

)
y(t). (3.3)
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The relationships between the coefficients α, β and γ in the above LB-series can
be expressed as follows:

β = α ◦ e e is the eulerian idempotent in HMKW.

α = exp�(β) Exponential wrt. GL-product

γ = α ◦ Y −1 ◦D Dynkin idempotent in Hsh(OT).

α = Q(γ) Q-operator in Hsh(OT).

Here Hsh denotes the shuffle Hopf algebra, and Q is constructed from the Bell
polynomials.
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Summary of Paper B

Backward error analysis and the substitution law for Lie group integrators

A. Lundervold and H.Z. Munthe-Kaas

Submitted to Foundations of Computational Mathematics, 2011.

Paper A ends with a short presentation of the substitution law for Lie–Butcher se-
ries, which Paper B develops in full detail. We obtain a formula for the substitution
law that can be used to calculate the coefficients of the modified vector fields used
in backward error analysis.

The paper continues in the tradition of Paper A by explaining how Lie–Butcher
theory is purely algebraic. For example, it points out how all the basic definitions
follow from the fact that N = R〈OT 〉 (as defined in Section 2.2 in Part I) is the
free D-algebra. Then elementary differentials Ff , Lie–Butcher series Bf and also
the substitution law ? can be defined in terms of commutative diagrams:

{ } ⊂ - N

gM

f
?
⊂- U(g)M

Ff
?

{ } ⊂ - N∗

gM

f
?
⊂- U(g)M

Bf
?

{ } ⊂ - N

D(N)

a
?

⊂ - N .

a?

?

A future goal will be to describe the Hopf algebra underlying the substitution
law, a project currently under investigation [24].
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Summary of Paper C

On pre-Lie-type algebras with torsion

A. Lundervold and H.Z. Munthe-Kaas

Note: This paper has been updated and will be published under the title On
post-Lie algebras, Lie-Butcher series and moving frames. See

http://arxiv.org/abs/1203.4738.

The main motivation for this paper comes from the observation that pre-Lie
algebras correspond to algebras of affine connections with vanishing curvature and
torsion, which is reflected in their use in classical geometric numerical integration
in Rn. As we have seen, the role of pre-Lie algebras are taken over by D-algebras
when we look at geometric numerical integration on more general manifolds,
which may include both curvature and torsion. In this paper we introduce an
algebraic formulation for the case of connections with non-vanishing curvature or
torsion.

flat const. curvature
torsion-free PreLie Lie admissible
const. torsion PostLie ?∗

It turns out that the correct algebraic formulation for flat algebras with constant tor-
sion is post Lie algebras. This paper relates these to the D-algebras of numerical
integration by showing how the universal enveloping algebra of the free post-Lie
algebra is isomorphic to the free D-algebra. This opens up a new way to study
Lie–Butcher series, more closely related to their character as “Lie-series”. It also
gives a cleaner way to understand their geometric features.

* The case corresponding to constant curvature and torsion has not yet been discovered.
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Abstract

B-series originated from the work of John Butcher in the 1960s as a tool to analyze numer-
ical integration of differential equations, in particular Runge–Kutta methods. Connections
to renormalization theory in perturbative quantum field theory have been established in re-
cent years. The algebraic structure of classical Runge–Kutta methods is described by the
Connes–Kreimer Hopf algebra.

Lie–Butcher series are generalizations of B-series that are aimed at studying Lie-group
integrators for differential equations evolving on manifolds. Lie group integrators are based
on general Lie group actions on a manifold, and classical Runge–Kutta integrators appear
in this setting as the special case of Rn acting upon itself by translations. Lie–Butcher
theory combines classical B-series on Rn with Lie-series on manifolds, and the underlying
Hopf algebra HN combines the Connes–Kreimer Hopf algebra with the shuffle Hopf algebra
of free Lie algebras.

Aimed at a general mathematical audience, we give an introduction to Hopf algebraic
structures and their relationship to structures appearing in numerical analysis. In particular,
we explore the close connection between Lie series, time-dependent Lie series and Lie–Butcher
series for diffeomorphisms on manifolds. The role of the Euler and Dynkin idempotents in
numerical analysis is discussed. A non-commutative version of a Faà di Bruno bialgebra is
introduced, and the relation to non-commutative Bell polynomials is explored.

1



Contents

1 Outline 1

2 Introduction to numerical integrators and their analysis 2
2.1 Classical integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Lie group integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Exponential Euler method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Choosing a good action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Higher order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Hopf algebras 6
3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Examples: The concatenation and shuffle Hopf algebras . . . . . . . . . . . . . . . 8
3.3 Characters and endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Infinitesimal characters, the exponential and the logarithm . . . . . . . . . 10
3.3.2 Eulerian idempotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 The graded Dynkin operator . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Algebras of formal diffeomorphisms on manifolds 12
4.1 Autonomous Lie series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Time-dependent Lie series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Non-commutative Bell polynomials and the Dynkin–Faà di Bruno bialgebra 13
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1 Outline

The main objective of this paper is to explore algebraic structures underlying groups of formal
diffeomorphisms on manifolds. The focus is on some important mathematical structures appearing
in numerical integration on manifolds that are likely to find applications also in other areas of
mathematics. The relationship between classical Lie series on manifolds, time-dependent Lie series
and Lie–Butcher series is explained in detail. We develop the algebraic structures introduced in
[38, 39, 40, 42, 45, 44, 3], and in particular explore connections between Hopf- and Lie algebras,
differential geometry and analysis of numerical integration on manifolds. The paper does not go
into a detailed study of the many applications of these algebraic structures in numerical analysis,
but we give some brief sketches.

The introductory Chapters 2 and 3 contains an overview of well-known results. Chapter
2 contains a concise introduction to numerical integration and algebraic structures appearing in
numerical analysis, both classical methods on Rn and Lie group methods generalizing to manifolds.
Chapter 3 presents an introduction to Hopf algebraic structures.

Chapter 4 contains more new and recent material. It details the algebraic structures of Lie–
Butcher theory, and discusses the interplay between algebraic and differential geometric points
of view. In particular, we want to emphasize the strong connections between the algebraic the-
ory of Lie series, time-dependent Lie series and Lie–Butcher series. Chapter 4 therefore starts
with a discussion of classical Lie series and pullback formulas on manifolds, continuing with an
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exploration of some less known time-dependent pullback formulas. We will explain the relevance
of the Euler and Dynkin idempotents, and introduce a non-commutative Dynkin–Faà di Bruno
bialgebra, related to non-commutative Bell polynomials appearing in various contexts in earlier
works: numerical analysis [39], control theory [37] and quantization [31]. This Dynkin–Faà di
Bruno bialgebra is related to, but different from, the Hopf algebras explored by Brouder et. al.
in [6].

In the final part of Chapter 4, we turn to Lie–Butcher series. We explore backward error
analysis and the substitution law in the setting of algebras of non-commuting frames on manifolds.
Although we will not give detailed expositions and applications of these subjects we hope that
this presentation will systematize the theory, opening it up for further research.

2 Introduction to numerical integrators and their analysis

LetM be a manifold and F : M→ TM a vector field. By the flow of an autonomous vector field
F we mean the diffeomorphism Φt,F : M→M, defined for t ∈ R such that Φs,F ◦Φt,F = Φs+t,F ,
Φ0,F = Id and ∂/∂t|t=0 Φt,F (p) = F (p) for all p ∈M.

Numerical integration of ODEs is about constructing good numerical approximations to Φt,F
for a given vector field F . A numerical integration algorithm yields a diffeomorphism Ψh,F ,
henceforth called the numerical integrator. The real parameter h is called the step size. For an
initial point y0 ∈ M, and a chosen step size h > 0, the numerical method produces a discrete
sequence of solution points yi = Ψh,F (yi−1), with the goal of arriving at yk ≈ Φkh,F (y0). Note
that, unlike the exact flow, numerical integrators are not 1-parameter Lie groups in h. In general
we have Ψh,F ◦Ψs,F 6= Ψh+s,F , and Ψ−h,F 6= Ψ−1

h,F . Integrators for which the latter identity
holds are called (time-)symmetric methods. Most integrators satisfy the consistency conditions
Ψ0,F = Id and ∂/∂t|t=0 Ψt,F (p) = F (p) as well as scaling homogeneity Ψh,F = Ψ1,hF .

Many algebraic aspects of numerical integration are related to the computation of compositions,
logarithms and exponentials of numerical integrators. In this introduction we will introduce some
basic algebraic structures arising in the analysis of numerical integrators. In particular we will
focus on structures that originate from the study of Lie group integrators, which are numerical
integrators on general manifolds. The resulting theory combines Lie theory with the classical
Butcher theory that describes numerical integrators on Rn.

This first section presents a survey of well known results from numerical analysis. A detailed
understanding of this introductory section is not necessary for reading the rest of the paper, and
readers mainly interested in algebraic structures may jump directly to Section 3.

2.1 Classical integrators

In the early 1960s, John Butcher set out to explore the algebraic territory of numerical algorithms
for integrating ODEs evolving on vector spaces

y′(t) = F (y), y ∈ Rn, F : Rn → Rn. (2.1)

In particular he studied the family of Runge–Kutta methods. Given a time step h ∈ R, these
methods advance the solution from y0 = y(0) to y1 ≈ y(h) as:

for r = 1 : s do

Yr =
∑s
k=1 arkFk + y0

Fr = hF (Yr)
end

y1 =
∑s
k=1 bkFk + y0.

This basic step is iterated: y0 7→ y1 7→ . . . 7→ yn, with constant or variable step sizes h, until
the final solution yn ≈ y(tn) is reached. The coefficients ark and bk for r, k ∈ {1, . . . , s} define a
particular s-stage RK method.
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A goal of numerical analysis is to characterize coefficients ark and bk that yield ‘good’ methods
(when applied to a given class of differential equations). The view of what a good integration
method is has, however, evolved over the last decades. Traditionally, order theory and stability
were the most important properties to consider. A numerical integrator is of order p if the first
p+1 terms of the Taylor expansion of the analytical solution agrees with the first p+1 terms of the
numerical method (developed in the parameter h). Requiring a certain order results in algebraic
conditions, called order conditions, on the coefficients of the method.

Many numerical methods for solving the equation (2.1) can be studied by using B-series (see
e.g. [25]), introduced by Hairer and Wanner in 1974 [26]. A B-series is a (formal) series indexed
over the set of rooted trees T , and can for a vector field F be written as

Bh(a)(y) = a(I)y +
∑

τ∈T

h|τ |

σ(τ)
a(τ)FF (τ)(y). (2.2)

Here a is a map a : T → R, I is the empty tree, |τ | is the number of vertices of τ (the order of
the tree τ) and σ is a certain symmetry factor. The map FF (τ) : Rn → Rn is the elementary
differential of the tree τ and is given recursively as follows:

FF (τ) = F (m) (FF (τ1)(y), ...,FF (τm)(y)) (y), (2.3)

where τ = B+(τ1, ..., τm) is the tree constructed by adding a common root to the subtrees τ1 . . . τm,
and F (m) is the mth derivative of the vector field.

One way in which B-series can be applied to the study of numerical methods is to order theory.
For example, the order conditions for Runge–Kutta methods can easily be obtained by writing
the method as a B-series and then comparing the coefficients of this series with the exact solution
written as a B-series (see e.g. [25, Chapter. III.1.2]).

The composition of Runge–Kutta methods is also of great interest, and this leads to the study
of the composition of B-series. A series BhF (a) is inserted into another series BhF (b), which gives
the B-series BhF (a)(BhF (y)(b)) = BhF (a · b)(y). The resulting product a · b gives rise to a group,
called the Butcher group [9, 16].

Butcher realized early on that the set of Runge–Kutta methods forms a group, and character-
ized algebraically the composition and inverse in this group. Much later, this group was identified
with the character group of the Connes–Kreimer Hopf algebra [17, 19, 5].

In recent years the importance of preserving various geometric properties of the underlying con-
tinuous dynamical system has become better understood. The research topic Geometric Numerical
Integration [25] emphasizes this view. Geometric integration algorithms have been successfully de-
veloped for various classes of differential equations, such as volume preserving flows, Hamiltonian
equations, systems with first integrals and equations evolving on manifolds. An important tool
for investigating the geometrical properties of a numerical integrator is through backward error
analysis. For a given numerical method Ψh,F , we seek a series expansion of a modified vector field

(h, F ) 7→ F̃h such that the numerical solution equals1 the analytical flow of the modified vector

field: Ψh,F = Φt,F̃h

∣∣∣
t=h

.

This is computed as a formal logarithm F̃h = Log(Ψh,F ), which in Hopf algebraic language is
expressed by the Eulerian idempotent (Section 3.3.2).

Still another idea, which has been developed in [14], is to ask for a series development of a
modified vector field Fh such that when the numerical method is applied to Fh, the exact analytical
solution is produced: Ψh,Fh

= Φh,F . This has been taken much further in recent work [15, 10].

The algebraic operation (h, F ) 7→ Fh is commonly referred to as a substitution law. The Hopf
algebra of the substitution law is introduced in [10].

1The series for F̃h is a formal series which usually does not converge. By truncating the series at an optimal
point we find a modified equation which is exponentially close to the numerical solution, see [25]. In this paper we
deal only with formal series, and convergence is not considered.
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The theory of B-series is often a very important component in a numerical analyst’s toolbox,
and is used to study all of the above: order theory, backward error analysis, modified vector fields
and structure preserving properties of numerical integrators.

2.2 Lie group integrators

Numerical Lie group integrators for ODEs is a generalization of numerical integration of ODEs
from the classical setting of equations on Rn to differential equations on manifolds. See [28] for
an extensive survey.

2.2.1 Exponential Euler method

LetM denote a manifold, XM its Lie algebra of vector fields with the Jacobi bracket and Diff(M)
the group of diffeomorphisms on M. Let exp : XM → Diff(M) denote the flow operator. We
want to numerically integrate an ODE on M given as

y′(t) = F (y), y(0) = y0 for F ∈ XM, (2.4)

with the analytical solution y(t) = exp(tF ) ·y0. Here exp(tF ) ·y0 denotes the evaluation of the
diffeomorphism exp(tF ) at y0 ∈M.

Assumption 2.1. The fundamental assumption for numerical Lie group integrators is the exis-
tence of a subalgebra g ⊂ XM such that

• All vector fields V ∈ g can be exponentiated exactly.

• The Lie algebra g defines a frame on TM, i.e. g spans the tangentspace TpM at all points
p ∈M. In other words, the action generated by g is transitive on M.

The vector fields in g are called the frozen vector fields. Due to the frame assumption, we can
always express the vector field F and the ODE (2.4) in terms of frozen vector fields via a function
f :M→ g as F (y) = f(y)·y, where f(y) ∈ XM and f(y)·y denotes evaluation of this vector field
in y. Thus (2.4) can be written in the form

y′(t) = f(y)·y, y(0) = y0 ∈M. (2.5)

In the case where g forms a basis for TyM, the function f(y) is uniquely defined. In more general
situations, g is an overdetermined frame for TyM, and there is a freedom in the choice of f . This is
called a choice of isotropy, and is of major importance for the quality of the numerical integrator.

With the equation written as (2.5), we can present the simplest of all Lie group integrators:
the exponential Euler method. Given a time step h ∈ R, the method advances the solution from
y0 = y(0) to y1 ≈ y(h) as:

Algorithm 2.2 (Exponential Euler).

y1 = exp(hf(y0))·y0.

In each step the solution is advanced yk 7→ yk+1 by integrating the frozen vector field equation

y′(t) = f(yk)·y, y(0) = yk

from t = 0 to t = h. We will in the sequel present methods of higher order and with superior
qualities compared to this simple scheme. The main theme of the paper is the algebraic structures
arising from the numerical analysis of such integration schemes.
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2.2.2 Choosing a good action

In practice it is of importance that exp: g → Diff(M) can be computed fast, and furthermore
that the given vector field F (y) is locally well approximated by f(y0) ·y. Exactly what ‘well’
means depends on what we want to achieve. In many situations we can choose g so that certain
first integrals of the original system are exactly preserved by the frozen flows. Choosing g and
f :M→ g is in many ways similar to choosing a preconditioner in iterative methods for solving
linear equations: we want a good approximation which is easy to compute.

A simple choice of g is obtained by embeddingM⊂ RN and choosing g = RN as the (commu-
tative) algebra generated by {∂/∂xj}Nj=1, i.e., the constant vector fields on RN . Since the vector

fields are constant, we have f(y0)·y = f(y0), so the function f simply becomes f(y0) = F (y0) ∈ RN ,
all commutators in g vanish and the exponential on g is exp(V )·p = V + p for V, p ∈ RN . In this
case all Lie group integrators will reduce to classical integrators, e.g. exponential Euler becomes
the classical Euler y1 = hF (y0) + y0.

The other extreme is g = XM and f(y) = F for all y, in which case exponential Euler yields
the analytical solution exactly. However, the computation of the exponential on g is just as difficult
as solving the original equation. We seek efficient choices in between these two extremes.

In many cases g is given as the infinitesimal generators of a (e.g. left) Lie group action on
M. For example, consider the sphere M = S2 acted upon from left by the group G = SO(3) of
orthogonal 3 × 3 matrices, whose Lie algebra so(3) consists of skew 3 × 3 matrices. Any matrix
V ∈ so(3) is uniquely identified with the infinitesimal generator2 ξV ∈ XM, given by matrix-
vector multiplication ξV ·y = V y for y ∈ S2. Therefore (2.5) becomes y′(t) = V (y)y, where V (y)
is a skew symmetric matrix. The exponentiation is related to the matrix exponential expm(V ) as
exp(ξV )·y = expm(V )y.

Another important example of group actions arise in the solution of isospectral differential
equations, where GL(n) acts on gl(n) by the adjoint action (similarity transform) A ·Y = AY A−1

for A ∈ GL(n), Y ∈ gl(n). In these problems M ⊂ gl(n) is one of the (isospectral) orbits
of the action. For this action (2.5) acquires the isospectral form Y ′(t) = [B(Y ), Y ] for some
B(Y ) ∈ gl(n). Since the action is a similarity transform it is guaranteed that all the eigenvalues
of Y (t) are preserved also by the numerical integrator.

Yet another example, which occurs in Lie–Poisson problems in computational mechanics, is
the coadjoint action of a Lie group on the dual of its Lie algebra, g∗. In this case M ⊂ g∗ is
a coadjoint orbit. Using this action we can guarantee that the numerical Lie group integrator
exactly preserves the Casimirs of the continuous system.

For other problems it may be advantageous to choose g by simplifying the original equation to
a family of integrable equations. An example is the computation of the motion of charged particles
in a magnetic field. The solution in the case of constant magnetic fields is given by helical motions
around the field lines. The corresponding Lie algebra yields fast and accurate Lie group integrators
for the full problem of non-constant magnetic fields. Another example is integration of a spinning
top, where we obtain simpler equations by considering the direction of gravity as being constant
in body coordinates. In both these problems, the action preserves important first integrals of the
system. A third example is integration of stiff equations on Rn, where an integrable Lie algebra
is obtained by considering all affine linear vector fields. This connects the theory of Lie group
integrators with the so-called exponential integrators. See [28] for details.

2.2.3 Higher order methods

Most Lie group methods for integrating (2.5) are built from linear operations and commutators
in g and compution of flows of frozen vector fields (exponentials). Runge–Kutta type methods
with basic motions expressed in terms of an exponential of a sum of elements in g are commonly
referred to as RKMK methods [28], as in the following example:

2Recall that the identification of the Lie algebra of a left group action with the infinitesimal generator in XM
is an anti-homomorphism, [ξV , ξW ] = −ξ[V,W ]. In this paper the brackets are Jacobi brackets on XM, and some
signs may differ when compared to cited papers.
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Algorithm 2.3 (4th order RKMK from [39]).

Y1 = y0 F1 = hf(Y1)
Y2 = exp( 1

2F1)·y0 F2 = hf(Y2)
Y3 = exp( 1

2F2 + 1
24 [F1, F2])·y0 F3 = hf(Y3)

Y4 = exp(F3 + 1
6 [F1, F3])·y0 F4 = hf(Y4)

V = 1
6F1 + 1

3 (F2 + F3) + 1
6F4 I = 1

8F1 + 1
12 (F2 + F3)− 1

24F4

y1 = exp(V + [I, V ])·y0.

Methods where the basic motions are products of exponentials of simple elements in g are
called Crouch–Grossman methods [18, 45].

Algorithm 2.4 (3rd order Crouch–Grossman method from [45]).

Y1 = y0 F1 = hf(Y1)
Y2 = exp( 3

4F1)·y0 F2 = hf(Y2)

Y3 = exp( 119
216F2)·exp( 17

108F1)·y0 F3 = hf(Y3)

y1 = exp( 13
51F3)·exp(− 2

3F2)·exp( 24
17F3)y0.

More recently methods have been developed which combine exponentials of sums and products
of exponentials, as in the commutator free Lie group methods [13]. An example is:

Algorithm 2.5 (4th order commutator free method from [13]).

Y1 = y0 F1 = hf(y0)

Y2 = exp( 1
2F1)·y0 F2 = hf(Y2)

Y3 = exp( 1
2F2)·y0 F3 = hf(Y3)

Y4 = exp(− 1
2F1 + F3)·Y2 F4 = hf(Y4)

y1 = exp( 1
4F1 + 1

6 (F2 + F3)− 1
12F4)·exp(− 1

12F1 + 1
6 (F2 + F3) + 1

4F4)·y0.

For equations of Lie type, y′(t) = f(t) · y, numerical methods based on Magnus and Fer
expansions have been developed in [29, 27], and the algebraic theory has recently been developed
further in [21].

To study order conditions, backward error analysis and structure preservation of such methods,
it is important to understand B-series in a general setting of group actions on manifolds. A first
attempt at combining Lie and B-series in a common mathematical framework appeared in [38, 39].
Hopf algebraic aspects have been explored further in [40, 3, 42].

3 Hopf algebras

This section gives a short collection of some facts and properties of Hopf algebras that we will use
in this work. For a more thorough introduction, see e.g. [1], [35], [48], [30], [11].

3.1 Basic definitions

Let k be a field containing Q.

Definition 3.1. A k-algebra A consists of a k-vector space A together with two maps µ : A⊗A→
A and η : k → A, called the product and the unit of A, such that:

(i) µ is associative, i.e. µ ◦ (I ⊗ µ) = µ ◦ (µ⊗ I),

(ii) the composites A ∼= A⊗ k I⊗η−→ A⊗A µ→ A and A ∼= A⊗ k η⊗I−→ A⊗A µ→ A both equal I.

Here I denotes the identity map.
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An algebra A is called commutative if µ ◦ τ = µ, where τ is the flip map τ(a1 ⊗ a2) = a2 ⊗ a1.

Definition 3.2. A k-coalgebra C is a k-vector space equipped with two maps ∆ : C → C ⊗ C
and ε : C → k, the coproduct and the counit, such that:

(i) ∆ is coassociative, i.e. (∆⊗ I) ◦∆ = (I ⊗∆) ◦∆,

(ii) the composites C
∆→ C ⊗ C I⊗ε−→ C ⊗ k ∼= C and C

∆→ C ⊗ C ε⊗I−→ k ⊗ C ∼= C both equal I.

A coalgebra C is called cocommutative if τ ◦∆ = ∆.

Definition 3.3. A bialgebra H over k is a k-vector space equipped with both an algebra (H,µ, η)
and a coalgebra structure (H,∆, ε), such that the coproduct ∆ : H → H ⊗ H and the counit
ε : H → k are algebra morphisms. These compatibility conditions can be expressed in terms of
the following commutative diagrams3, where τ denotes the flip operation τ(h1, h2) = (h2, h1):

H⊗4 I⊗τ⊗I - H⊗4

H ⊗H

∆⊗∆
6

µ
- H

∆
- H ⊗H

µ⊗µ
?

H ⊗H ε⊗ε- k ⊗ k

H

µ

?

ε
- k

∼=
?

A bialgebra H is called commutative if it is commutative as an algebra, and cocommutative if it
is cocommutative as a coalgebra.

Remark 3.4. There is symmetry in the definition of a bialgebra. Rather than requiring the
coalgebra structure to respect the algebra structure in the above sense, we could have switched
the role of the two structures. To complete the symmetry, we could in addition reverse the arrows
in the two diagrams above. This would result in an equivalent definition.

Grading. Let H be a graded k-vector space, i.e. H =
⊕

n≥0Hn. There is a notion of a graded
bialgebra, obtained by requiring the following of the algebra and coalgebra structure, respectively:

(i) µ(Hp, Hq) ⊂ Hp+q

(ii) ∆(Hn) ⊂⊕p+q=nHp ⊗Hq.

The grading of an algebra H gives rise to the grading operator Y : H → H given by

Y : h 7→
∑

k≥0

khk,

where h =
∑
n≥0 hn ∈

⊕
n≥0Hn. A graded bialgebra H =

⊕
n≥0Hn is called connected if H0 = k.

Proposition 3.5 ([35]). Let H be a connected, graded bialgebra. Then, for any x ∈ Hn, n ≥ 0,
we have:

∆x = 1⊗ x+ x⊗ 1 + ∆̃x, where ∆̃x ∈
⊕

p+q=n, p,q>0

Hp ⊗Hq.

We will often use the Sweedler notation for the coproduct:

∆x =
∑

(x)

x(1) ⊗ x(2) and ∆̃x =
∑

(x)

x′ ⊗ x′′.

3All diagrams were created using Paul Taylor’s diagram package, available from http://www.paultaylor.eu/

diagrams/
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Definition 3.6. A Hopf algebra is a bialgebra (H,µ, η,∆, ε) together with an antihomomorphism
S on H, called the antipode, with the property given by the commutativity of the following
diagram:

H ⊗H S⊗1 - H ⊗H

H
ε -

∆
-

k
η - H

µ

-

H ⊗H
1⊗S

-

∆ -

H ⊗H
µ

-

A Hopf algebra is graded if it is graded as a bialgebra and the antipode satisifies S(Hn) ⊂ Hn. If
a bialgebra is graded and connected, then it is automatically a graded Hopf algebra:

Proposition 3.7 ([35]). Any connected graded bialgebra is a Hopf algebra. The antipode S is
given recursively by S(1) = 1 and

S(x) = −x−
∑

(x)

S(x′)x′′

for x ∈ ker ε.

3.2 Examples: The concatenation and shuffle Hopf algebras

Recurring in the sequel are Hopf algebras built from letters in an alphabet. We follow the notation
of Reutenauer [47]. Consider a finite or infinite alphabet of letters A = {a, b, c, . . .}. We write A∗
for the collection of all empty or non-empty words over A, where I is the empty word. Let k〈A〉
be the k-algebra of non-commutative polynomials in A. A polynomial P ∈ k〈A〉 will be written
as a sum

P =
∑

ω∈A∗
(P, ω)ω,

where (P, ω) ∈ k is non-zero only for a finite number of ω. Let P,Q ∈ k〈A〉. The product of P
and Q, written as PQ, has coefficients

(PQ,ω) =
∑

ω=uv

(P, u)(Q, v).

The k-linear dual space denoted k〈〈A〉〉 := Homk(k〈A〉, k) is identified with all infinite k-linear
combinations of words. An α ∈ k〈〈A〉〉 can be written as an infinite series

α =
∑

ω∈A∗
(α, ω)ω,

where (α, ω) := α(ω) ∈ k and (·, ·) is the dual pairing defined such that words in A∗ are orthogonal,
(ω1, ω2) = δω1,ω2

for all ω1, ω2 ∈ A∗.
We define two different associative products on k〈A〉. The concatenation product ω1, ω2 7→

ω1ω2 obtained by concatenation of words and the shuffle product ω1, ω2 7→ ω1 � ω2 obtained by
linearly combining all possible shuffles of the two words i.e. combinations where the letters within
each word are not internally permuted:

abc� de = abcde+ abdce+ adbce+ dabce+ abdec+ adbec+ dabec+ adebc+ daebc+ deabc.

The shuffle product can be defined recursively as

(aω1)� (bω2) = a(ω1 � bω2) + b(aω1 � ω2),
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where a, b ∈ A and ω1, ω2 ∈ A∗. The unit of both concatenation and shuffle is the empty word I.
By dualization of these products we obtain the deconcatenation and the deshuffle coproducts.

The deconcatenation coproduct ∆d : k〈A〉 → k〈A〉⊗k〈A〉 is defined for ω = a1a2 · · · ak ∈ A∗ as:

∆d(ω) =

k∑

i=1

a1 · · · ai⊗ai+1 · · · ak. (3.1)

This coproduct is the dual of the concatenation product, so for any P,Q ∈ k〈A〉

(PQ,ω) = (P⊗Q,∆d(ω)) =
∑

(ω)∆d

(P, ω(1))(Q,ω(2)).

The deshuffle product ∆t : k〈A〉 → k〈A〉⊗k〈A〉 is similarly defined such that

(P �Q,ω) = (P⊗Q,∆t(ω)) =
∑

(ω)∆t

(P, ω(1))(Q,ω(2)).

The two coproducts can also be characterized by requiring that the letters in the alphabet A are
primitive, i.e. that ∆(a) = 1⊗ a+ a⊗ 1 for a ∈ A, and then extending ∆ to be a homomorphism
with respect to either of the two products on k〈A〉. We refer to [47] for explicit presentations of
the deshuffle coproduct.

We remark that the vector space k〈A〉 can now be turned into Hopf algebras in two different
ways. The cocommutative concatenation Hopf algebra is obtained by taking the concatenation as
product and the deshuffle as coproduct. The commutative shuffle Hopf algebra HSh(A) is obtained
by taking the shuffle as product and the deconcatenation as coproduct. Both these Hopf algebras
share the same antipode:

S(a1a2 . . . ak) = (−1)kakak−1 . . . a1, (3.2)

and in both cases the unit and counit is given by η(1) = I and ε(I) = 1, ε(ω) = 0 for all ω ∈ A∗\I.
We write HSh when A is understood.

The vector space k〈A〉 can be identified with the vector space underlying the tensor algebra
T (V ) on the vector space V generated by the alphabet A. The two algebra structures (concate-
nation and shuffling) correspond to the usual algebra structures given to the tensor algebra T (V )
and the tensor coalgebra T c(V ), respectively.

3.3 Characters and endomorphisms

This section is based on [20]. See also [35], [7] and [46].
Let (H,µ, η,∆, ε) be a graded bialgebra, and (A, ·, ηA) an algebra. The set Homk(H,A) of

linear maps from H to A sending ηH(1) =: 1H to ηA(1) =: 1A has an algebra structure given by
the convolution product :

α ∗ β = µA ◦ (α⊗ β) ◦∆.

The convolutional unit is the composition of the counit of H and the unit of A: δ := ηA ◦ ε. The
convolution can be written using the Sweedler notation:

α ∗ β =
∑

(x)

α(x(1)) · β(x(2)),

from which we find α ∗ δ = δ ∗ α = α. The unital algebra morphisms from H to A consists of all
α ∈ Homk(H,A) such that α(1H) = 1A and α(µ(h, h′)) = α(h)·α(h′) for all h, h′ ∈ H.

Proposition 3.8 ([35]). Let H be a graded Hopf algebra and A a commutative algebra. The set
HomAlg(H,A) of unital algebra morphisms from H to A equipped with the convolution product,
forms a group, G(H,A), called the group of A-valued characters of H. The inverse of an element
α is given by

α∗−1 = α ◦ S,
where S is the antipode of H.
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In the special case A = k, we get the group of characters of H, written as G(H) := G(H, k). The
grading on H splits the group of A-valued characters into graded components:

G(H,A) ∼=
∏

n≥0

HomAlg(Hn, A).

This is not a graded vector space, but rather the completion of one (see e.g. [20]), but we will
still refer to it as a graded vector space. The restriction of a character α : H → A to the degree n
component Hn of H will be denoted by αn.

3.3.1 Infinitesimal characters, the exponential and the logarithm

The infinitesimal A-valued characters, written g(H,A) are the linear maps α from H to A such
that:

α(µ(h, h′)) = α(h) · δ(h′) + δ(h) · α(h′),

where δ = ηA ◦ ε. This is a Lie algebra under the bracket induced by the convolution product:
[α, β] = α ∗ β − β ∗ α. In the special case where A = k we write g(H) for g(H, k).

The characters and infinitesimal characters are related via the exponential and the logarithmic
map. For α ∈ Homk(H,A), the exponential and logarithm with respect to convolution are given
by the formal series:

exp∗(α) =
∑

n≥0

1

n!
α∗n

log∗(δ + α) =
∑

n≥1

(−1)n−1

n
α∗n.

If H is graded and connected, and if α(1) = 0, where 1 ∈ k = H0, then α∗k = α ∗ · · · ∗ α = 0 on
Hn for n < k, and therefore both these sums are finite when restricted to Hn. The maps exp∗

and log∗ give a bijection between G(H,A) and g(H,A).

Example 3.9. Let HSh denote the shuffle algebra over A. Consider the dual space k〈〈A〉〉
equipped with the convolution product

(α ∗ β, ω) =
∑

(ω)∆d

(α, ω(1))(β, ω(2)) =
∑

ω=ω1ω2

(α, ω1)(β, ω2).

Note that convolution is just concatenation of series α ∗ β = αβ. The characters and infinitesimal
characters g(HSh), G(HSh) ⊂ k〈〈A〉〉 are given as

g(HSh) = {α ∈ k〈〈A〉〉 | α(I) = 0 and α(ω1 � ω2) = 0 for all ω1, ω2 ∈ A∗\I }
G(HSh) = {α ∈ k〈〈A〉〉 | α(I) = 1 and α(ω1 � ω2) = α(ω1)α(ω2) for all ω1, ω2 ∈ A∗\I }.

The convolutional unit δ is given as (δ, I) = 1 and (δ, ω) = 0 for all ω ∈ A\I. The logarithm of

α ∈ G(HSh) can be computed as log(α) =
∑
n>0

(−1)n−1

n (α − δ)∗n. For any ω ∈ A∗ we find that
(log(α), ω) is given by a finite sum expressed in terms of the Eulerian idempotent.

3.3.2 Eulerian idempotent

Let H be a commutative, connected and graded Hopf algebra. Consider Endk(H) = Homk(H,H)
equipped with the convolution product ∗. Let Id ∈ Endk(H) be the identity endomorphism and
δ = η ◦ ε ∈ Endk(H) the unit of convolution.

Definition 3.10 ([32]). The Eulerian idempotent e ∈ End(H) is given by the formal power series

e := log∗(Id) = J − J∗2

2
+
J∗3

3
+ · · · (−1)i+1 J

∗i

i
+ · · · ,

where J = Id−δ.
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Proposition 3.11 ([32]). For any commutative graded Hopf algebra H, the element e ∈ Endk(H)
defined above is an idempotent: e ◦ e = e.

The practical importance of the Eulerian idempotent in numerical analysis arises in backward
error analysis, where the following lemma provides a computational formula for the logarithm:

Proposition 3.12. For α ∈ G(H) and h ∈ H, we have

log∗(α)(h) = α(e(h)).

In other words, the logarithm can be written as right composition with the eulerian idempotent:

log∗ = ◦ e : G(H)→ g(H).

The result follows from the following computation, which uses that α is a homomorphism:

((α− δ)∗l, ω) = µlk◦(α⊗ · · ·⊗α)◦∆̃lω = α◦µlH◦∆̃lω = α◦J∗lω,

where (−)l denotes l-fold application.

3.3.3 The graded Dynkin operator

There is another bijection between the infinitesimal characters and the characters in any commu-
tative graded Hopf algebra H, described in [20]. The bijection is given in terms of the Dynkin
operator D : H → H.

Classically, the Dynkin operator is a map D : k〈A〉 → Lie(A), where Lie(A) = g(HSh)∩ k〈A〉
are the Lie polynomials. The classical Dynkin operator is given by left-to-right bracketing:

D(a1...an) = [. . . [[a1, a2], a3], . . . , an], where [ai, aj ] = aiaj − ajai.

Letting Y (ω) = #(ω)ω denote grading operator, where #(ω) is word length, it is known that the
Dynkin idempotent, given as Y −1D, is an idempotent projection on the subspace of Lie polyno-
mials. As in [20], the Dynkin operator can be written as the convolution of the antipode S and
the grading operator: D = S ∗ Y . This description can be generalized to any graded, connected
and commutative Hopf algebra H:

Definition 3.13. Let H be a graded, commutative and connected Hopf algebra with grading
operator Y : H → H. The Dynkin operator is the map D : H → H given as

D := S ∗ Y.

Lemma 3.14 ([20]). The Dynkin operator is a H-valued infinitesimal character of H.

Theorem 3.15 ([20]). Right composition with the Dynkin operator induces a bijection between
G(H) and g(H):

◦D : G(H)→ g(H).

The inverse is given by Γ : g(H)→ G(H) as

Γ(α) =
∑

n

∑

k1+···+kl=n
k1,...,kl>0

αk1 ∗ · · · ∗ αkl
k1(k1 + k2) · · · (k1 + · · ·+ kl)

, (3.3)

where αk = α|Hk .

Later we will apply the Dynkin operator and its inverse in the setting of a shuffle algebra HSh(OT),
where OT is an alphabet of all ordered rooted trees, and the grading |τ | of τ ∈ OT counts the
nodes in the tree.
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4 Algebras of formal diffeomorphisms on manifolds

The main goal of this section is to arrive at Lie–Butcher series and the underlying Hopf algebraHN .
This Hopf algebra contains the Connes–Kreimer Hopf algebra as a subalgebra and is also closely
related to HSh. To emphasize the natural connection between Lie–Butcher series, HN and more
classical Lie series, we start with a discussions of Lie series (autonomous and non-autonomous).

4.1 Autonomous Lie series

In this section we review the well-known theory of Lie series on manifolds and the corresponding
Hopf algebraic structures of the free Lie algebra. The algebraic theory is detailed in [47, 11]. For
the analytical theory we refer to [2].

Let F be a vector field on a manifold M and Φt,F : M → M its flow. Let ψ : M → E be a
section of a vector bundle over M, and let Φ∗t,Fψ denote the pullback. For the applications later
in this paper we will only consider trivial bundles, in which case we write ψ : M → V for some
vector space V and define pullback as composition Φ∗t,Fψ = ψ◦Φt,F . The Lie derivative of ψ is
defined as

F [ψ] =
∂

∂t

∣∣∣∣
t=0

Φ∗t,Fψ. (4.1)

Composition of Lie derivatives defines an associative, non-commutative product of vector fields
F,G 7→ FG, where vector fields are first order differential operators. The product FG is the
second order differential operator (FG)[ψ] = F [G[ψ]] etc. We let I denote the 0th order identity
operator I[ψ] = ψ. The linear span of all differential operators of all orders forms the universal
enveloping algebra U(XM).

The basic pullback formula is ([2]):

∂

∂t
Φ∗t,Fψ = Φ∗t,F (F [ψ]). (4.2)

Iterating this we find ∂n/∂tn|t=0Φ∗t,Fψ = F [F [· · · [ψ]]] := Fn[ψ], and hence follows the (Taylor)–
Lie form of a pullback series:

Φ∗t,Fψ =
∞∑

j=0

tj

j!
F j [ψ] := Exp(tF )[ψ]. (4.3)

Fundamental questions are: Which series in U(XM) represent vector fields and which represent
pullback series? How do we algebraically characterize compositions and the inverse of pullback
series? How do we understand the Exp map taking vector fields to their pullback series? And
what about the inverse Log operation? These questions are elegantly answered in terms of the
shuffle Hopf algebra. We will detail these issues. Later we will see the same structures reappear
in the discussion of B-series.

An algebraic abstraction of Lie series starts with fixing a (finite or infinite) alphabet A and a
map ν : A → XM assigning each letter to a vector field. As in Example 3.2 we let R〈A〉 denote
all finite R-linear combinations of words built from A and HSh the shuffle algebra. The map ν
can be uniquely extended to a linear Fν : R〈A〉 → U(XM) as a concatenation homomorphism:

Fν(I) = I,
Fν(a) = ν(a) for all letters a ∈ A,

Fν(ω1ω2) = Fν(ω1)Fν(ω2) for all words ω1, ω2 ∈ A∗.
We extend Fν to a map Bt taking an infinite series α ∈ R〈〈A〉〉 to an infinite formal series
Bt(α) ∈ U(XM)∗, defined for t ∈ R as follows: Consider the alphabet A with a grading |a| ∈ N+

for all a ∈ A. This extends to HSh as |ω| = |a1|+ . . .+ |ak| for all ω = a1 . . . ak ∈ A∗, |I| = 0, thus
HSh becomes a graded connected Hopf algebra. Given the grading we define

Bt(α) =
∑

ω∈A∗
t|ω|α(ω)Fν(ω). (4.4)
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Consider HSh
∗ = R〈〈A〉〉 with the convolution α ∗ β = αβ as in Example 3.9. By construction Bt

is a convolution homomorphism,

Bt(α ∗ β) = Bt(α)Bt(β).

For a real valued infinitesimal character α ∈ g(HSh), and a fixed t = h, Bh(α) is a formal vector
field on M. For a real valued character β ∈ G(HSh), Bh(β) represents a formal diffeomorphism
Φh on M via the pullback series

Bh(β)[ψ] = ψ◦Φh for ψ : M→ R.

Note, however, that pullbacks compose contravariantly with respect to composition of diffeomor-
phisms:

Bh(β1 ∗ β2)[ψ] = Bh(β1)Bh(β2)[ψ] = ψ◦Φ2◦Φ1.

To summarize: Composition of diffeomorphisms is modelled by convolution in G(HSh) (in
opposite order), the inverse of a diffeomorphism is computed by right composing with the antipode,
the convolutional exponential maps to the exponential of Lie series and the logarithm is computed
by composing with the Eulerian idempotent.

Bh(β◦S)Bh(β) = I for β ∈ G(HSh)

Bh(exp∗(α)) = Exp(Bh(α)) for α ∈ g(HSh)

Bh(β) = Exp(Bh(β◦e)) for β ∈ G(HSh).

In the next section we discuss flows of non-autonomous equations, and we will see that right
composition with the Dynkin idempotent represents algebraically the operation of finding a non-
autonomous vector field corresponding to a diffeomorphism on a manifold.

Remark 4.1. In [41] the Lie algebra of infinitesimal characters g(HSh) is studied as a graded free
Lie algebra. An explicit formula for the dimension of the homogeneous components gk = g(HSh)|k
is derived for general gradings. This is very useful for the study of the complexity of Lie group
integrators.

4.2 Time-dependent Lie series

The classical Faà di Bruno Hopf algebra models the composition of formal diffeomorphisms on
R ([23], [22], [24]). We will see that this has a natural generalization to compositions of time-
dependent flows on manifolds. We introduce a Dynkin–Faà di Bruno bialgebra describing the
composition of flows of time-dependent vector fields on a coarse level that considers only the
grading of the terms in the t-expansion of the time-dependent vector fields.

4.2.1 Non-commutative Bell polynomials and the Dynkin–Faà di Bruno bialgebra

Let I = {dj}∞j=1 be an infinite alphabet in 1–1 correspondence with N+, and consider the free
associative algebra D = R〈I〉 with the grading given by |dj | = j and |dj1 · · · djk | = j1 + · · · + jk.
Let ∂ : D → D be the derivation given by ∂(di) = di+1, linearity and the Leibniz rule ∂(ω1ω2) =
∂(ω1)ω2 + ω1∂(ω2) for all ω1, ω2 ∈ I∗. We let #(ω) denote the length of the word ω.

Definition 4.2. The non-commutative Bell polynomials Bn := Bn(d1, . . . , dn) ∈ R〈I〉 are defined
by the recursion

B0 = I
Bn = (d1 + ∂)Bn−1 = (d1 + ∂)nI for n > 0.
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The first of these are given as

B0 = I
B1 = d1

B2 = d2
1 + d2

B3 = d3
1 + 2d1d2 + d2d1 + d3

B4 = d4
1 + 3d2

1d2 + 2d1d2d1 + d2d
2
1 + 3d1d3 + d3d1 + 3d2d2 + d4.

The polynomials Bn are introduced in [38, 39] to explain the Butcher order theory of Runge–
Kutta methods in a manifold context, and generalize to certain classes of numerical integrators
on manifolds.

Remark 4.3. Additional insight to the Bell polynomials are obtained by considering the free
associative algebra generated by two symbols d1 and ∂, defining

di := [∂, di−1] = ∂di−1 − di−1∂ for i > 1.

We find by induction that (d1 + ∂)n satisfies the binomial relation

(d1 + ∂)
n

=

n∑

k=0

(
n

k

)
Bk(d1, . . . , dk)∂n−k, (4.5)

which yields the formula

exp (d1 + ∂) =

∞∑

m=0

Bm(d1, . . . , dm)

m!
exp (∂) , (4.6)

and also the recursion

Bn+1(d1, . . . , dn+1) =
n∑

k=0

(
n

k

)
Bk(d1, . . . , dk)dn−k+1 for n > 0. (4.7)

The non-commutative partial Bell polynomials Bn,k := Bn,k(d1, . . . , dn−k+1) are defined as the
part of Bn consisting of the words ω of length #(ω) = k > 0, e.g. B4,3 = 3d2

1d2 + 2d1d2d1 + d2d
2
1.

Thus

Bn =
n∑

k=1

Bn,k.

A bit of combinatorics yields an explicit formula:

Bn,k =
∑

ω∈I∗
|ω|=n,#(ω)=k

κ(ω)

(
n

ω

)
ω, (4.8)

where for ω = dj1dj2 · · · djk
(
n

ω

)
:=

(
n

|dj1 |, |dj2 |, . . . , |djk |

)
:=

n!

j1!j2! · · · jk!

are the multinomial coefficients and the coefficients κ(ω) are defined as

κ(ω) := κ(|dj1 |, |dj2 |, . . . , |djk |) :=
j1j2 · · · jk

j1(j1 + j2) · · · (j1 + j2 + · · ·+ jk)
. (4.9)

The coefficients κ form a partition of unity on the symmetric group Sk,
∑

σ∈Sk
κ(σ(ω)) = 1,
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where σ(ω) denotes a permutation of the letters in ω. E.g. κ(1, 2) + κ(2, 1) = 2
3 + 1

3 = 1.
It is often useful to employ polynomials Qn and Qn,k related to Bn and Bn,k by the following

rescaling:

Qn,k(d1, . . . , dn−k+1) =
1

n!
Bn,k(1!d1, . . . , j!dj , . . .) =

∑

|ω|=n,#(ω)=k

κ(ω)ω

Qn(d1, . . . , dn) =
n∑

k=1

Qn,k(d1, . . . , dn−k+1)

Q0 := I.

(4.10)

Note that Bn and Bn,k become the classical Bell- and partial Bell polynomials when the product in
R〈I〉 is commutative, i.e. in the free commutative algebra on I. A non-commutative Faà di Bruno
Hopf algebra is studied in [6]. However, their definition differs from the present by defining the
polynomials Qn,k without the factor κ that associates different factors to different permutations
of a word (adding up to 1 over all permuatations).

These Bell polynomials are closely related to the graded Dynkin operator on a connected graded
Hopf algebra H. For α ∈ H∗, define a graded algebra homomorphism di 7→ di(α) : D → H∗ as

di(α) = αi = α|Hi , didj(α) = αi ∗ αj . (4.11)

Proposition 4.4. The operator defined as

Q(α) =

∞∑

n=0

Qn(α), (4.12)

is a bijection from infinitesimal characters to characters Q : g(H) → G(H) with inverse given by
right composition with the Dynkin idempotent Y −1◦D,

Q−1(β) = β◦Y −1◦D, (4.13)

where Y is the grading operator on H and D = S ∗ Y is the graded Dynkin operator.

Proof. For α ∈ g(H) we have

Γ(α◦Y ) =

∞∑

n=0

∑

j1+···+jk=n

j1j2 · · · jk
j1(j1 + j2) · · · (j1 + · · ·+ jk)

αj1 ∗ · · · ∗ αjk = Q(α), (4.14)

thus the result follows from Theorem 3.15.

The non-commutative Dynkin–Faà di Bruno bialgebra D is obtained by taking the algebra
structure of D and defining the coproduct ∆D as

∆D(I) = I⊗I

∆D(dn) =
n∑

k=1

Bn,k⊗dk.
(4.15)

This extends to all of D by the product rule ∆D(didj) = ∆D(di)∆D(dj). Thus, e.g.

∆D(d1) = d1⊗d1

∆D(d2) = d2
1⊗d2 + d2⊗d1

∆D(d1d2) = d3
1⊗d1d2 + d1d2⊗d2

1.

Note that the coproduct is not graded by | · |, thus Proposition 3.7 does not hold for D. By a
lengthy (but not enlightening) induction argument we can prove:
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Lemma 4.5. The coproduct of the partial Bell polynomials are given as

∆D(Bn,k) =

n∑

`=1

Bn,`⊗B`,k. (4.16)

Note that Bn,1 = dn, thus (4.15) is a special case of (4.16). Summing the partial Bn,k over k, we
find the coproduct of the full Bell polynomials:

∆D(Bn) =
n∑

k=1

Bn,k⊗Bk.

Using Lemma 4.5 and the fact that Bn,k = 0 for k > n, one can easily show that D is a bialgebra.

Proposition 4.6. D = R〈I〉 with the non-commutative concatenation product and the coproduct
∆D form a bialgebra D which is neither commutative nor cocommutative.

4.2.2 Pullback along time-dependent flows

Let Ft =
∑∞
j=0 Fj+1

tj

j! be a time-dependent vector field on M where Fj = F
(j−1)
t

∣∣∣
t=0

. Let Φt,Ft
be the solution operator of the corresponding non-autonomous equation, such that

y(t) = Φt,Fty0 solves y′(t) = Ft(y(t)), y(0) = y0.

Note that Φt,Ft is not a 1-parameter subgroup of diffeomorphisms in t.

Lemma 4.7 ([38]). The n-th time derivative of the pullback of a (time-independent) function ψ
along the time-dependent flow Φt,Ft is given as

∂n

∂tn
Φ∗t,Ftψ = Bn(Ft)[ψ], (4.17)

where Bn(Ft) is the image of Bn under the homomorphism from D to U(XM) given by di 7→
F

(i−1)
t . In particular

∂n

∂tn

∣∣∣∣
t=0

Φ∗t,Ftψ = Bn(F1, . . . , Fn)[ψ]. (4.18)

Proof. The non-autonomous vector field Ft on M corresponds to the autonomous field Ft + ∂/∂t
on M×R, thus (4.2) yields

∂

∂t
Φ∗t,Ftψ = Φ∗t,Ft ((Ft + ∂/∂t)[ψ])⇒ ∂n

∂tn
Φ∗t,Ftψ = Φ∗t,Ft ((Ft + ∂/∂t)n[ψ]) .

Consider the homomorphism induced from d1 7→ Ft and ∂ 7→ ∂/∂t, thus di 7→ F
(i−1)
t . Equa-

tion (4.17) follows directly from Definition 4.2. At t = 0 we have di 7→ Fi, thus (4.18).

Remark 4.8. Note that (4.6) yields a space-time split formula for pullback which is valid also for
pullback of a time-dependent function ψt. The pullback for t ∈ [0, h] developed at t = 0 becomes

Φ∗h,Ftψt = exp

(
h(Ft +

∂

∂t
)

)∣∣∣∣
t=0

[ψt] =

∞∑

n=0

hn

n!
Bn(Ft) exp(h

∂

∂t
)

∣∣∣∣∣
t=0

[ψt] =

∞∑

n=0

hn

n!
Bn(F1, . . . , Fn)[ψh].

The Dynkin idempotent relates pullback series with their corresponding time-dependent vector
fields. Let A be an arbitrary alphabet with a grading | · | : A → N+, let HSh = HSh(A) be the
corresponding graded shuffle algebra and let Bt(α) be as in (4.4).
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Proposition 4.9. Let α ∈ g(HSh) and β = Q(α) ∈ G(HSh) be related by the graded Dynkin
idempotent as in Proposition 4.4. Define the time-dependent vector field

Ft =
∂

∂t
Bt(α).

Then pullback of a time-independent ψ along the time-dependent flow Φt,Ft is given as

Φ∗t,Ftψ = Bt(β)[ψ]. (4.19)

Proof. We have Ft =
∑∞
j=0 Fj+1

tj

j! where Fj = Fν(j!αj). Developing the Taylor series of Φ∗t,Ftψ
at t = 0 we get from (4.18)

Φ∗t,Ftψ =
∞∑

n=0

tn

n!
Bn(F1, . . . , Fn)[ψ].

Thus
1

n!
Bn(F1, . . . , Fn) = F(

1

n!
Bn(1!α1, . . . , n!αn)) = F(Qn(α1, . . . , αn)).

Using (4.14) we obtain the result.

4.3 Lie–Butcher theory

Pullback formulas such as (4.19) relate the time derivatives of Ft with the spatial derivatives of
a function ψ. We have captured the algebraic structure of the temporal derivations through the
Dynkin idempotent Y −1◦D : G(HSh)→ g(HSh) and its inverse Γ◦Y : g(HSh)→ G(HSh). However,
the spatial Lie derivation Bt(β)[ψ] cannot be algebraically characterized within this structure. In
order to do this, we need to refine the Hopf algebra HSh. On the manifold M , we obtain a refined
version of U(XM) by expanding differential operators in terms of a non-commuting frame on
XM. If the manifold is Rn and the frame is the standard commutative coordinate frame, the
construction yields the classical Butcher formulation and the Connes–Kreimer Hopf algebra [4].
More generally we obtain a Hopf algebra HN , built on forests of planar trees, which contains the
Connes–Kreimer algebra as a subalgebra. In HN we can represent Lie derivation in terms of tree
graftings.

4.3.1 Differential operators in U(XM) expanded in a non-commuting frame

Let XM denote the Lie algebra of all vector fields on M and let g ⊂ XM be a transitive Lie
subalgebra, in the sense that g everywhere spans TM. This means that g defines a frame on the
tangent bundle. We do not assume that the frame forms a basis. In general dim(g) ≥ dim(M),
and in case of strict inequality we have a non-trivial isotropy subgroup at any point.

Let U(g) denote the universal enveloping algebra of g. We let gM and U(g)M denote maps
fromM to g and fromM to U(g). Since g is assumed to be transitive, we can represent any vector
field F ∈ XM with a function f ∈ gM as in Section 2.2.1. Similarly, any higher order differential
operator in U(XM) can be represented as a function in U(g)M. We have the natural inclusion g ⊂
gM and U(g) ⊂ U(g)M as constant maps, called frozen vector fields and higher order differential
operators. We identify U(g)M with sections of the trivial vector bundleM⊗U(g)→M, and for a
diffeomorphism Φ: M→M we define pullback of f ∈ U(g)M as Φ∗f = f◦Φ ∈ U(g)M. Pullback
in this bundle defines a parallel transport which gives rise to a flat connection with torsion. For
f, g ∈ U(g)M we define the connection f [g] ∈ U(g)M pointwise from the Lie derivative as

f [g](p) = (f(p)[g]) (p), p ∈M.

Similarly, the concatenation in U(g) is extended pointwise to a concatenation product fg ∈ U(g)M

as
(fg)(p) = f(p)g(p), p ∈M.

17



This is called the frozen composition of f and g. We can also compose f and g as non-frozen
differential operators f•g ∈ U(g)M:

(f•g)[h] = f [g[h]], for all h ∈ U(g)M .

This is identical to the composition in U(XM), which in Section 4.1 was written as F,G 7→ FG
for F,G ∈ XM.

It might be illustrative to write out the operations explicitly in terms of a basis {∂k}nk=1 of
(non-commuting) vector fields spanning g. Writing f, g ∈ gM in terms of the frame as f =

∑
k fk∂k

and g =
∑
` g`∂` for fk, g` ∈ RM, we have

fg =
∑

k,`

fkg`∂k∂`

f [g] =
∑

k,`

fk∂k[g`]∂`

f•g =
∑

k,`

fk∂k[g`]∂` +
∑

k,`

fkg`∂k∂`.

The connection f [g], the frozen composition fg and nonfrozen composition f•g are related as:

Lemma 4.10. Let f ∈ gM and g, h ∈ U(g)M. Then we have

I[g] = g

f [gh] = f [g]h+ g(f [h]), (Leibniz)

(f•g)[h] := f [g[h]] = (fg)[h] + (f [g])[h],

where I ∈ U(g)M is the constant identity map.

The proof is given in [42]. Note the difference between fg and f•g. In the concatenation the
value of g is frozen to g(p) before the differentiation with f is done, whereas in the latter case the
spatial variation of g is seen by the differentiation using f . Interestingly, the work of Cayley from
1857 [12] starts with the same result for vector fields expanded in the commuting frame ∂/∂xi.

From this lemma we may compute the torsion and curvature of the connection. Let f, g ∈ gM.
We henceforth let [f, g]• := f•g − g•f denote the Jacobi bracket and [f, g] = fg − gf the frozen
bracket. The frozen bracket is computed pointwise from the bracket in g as [f, g](p) = [f(p), g(p)]g.
Writing the connection as ∇fg := f [g], we find

T (f, g) = ∇fg −∇gf − [f, g]• = gf − fg = −[f, g]

R(f, g)h = ∇f∇gh−∇g∇fh−∇[f,g]•h = 0.

Note that if g is commutative, then [f, g] = 0 and the connection is both flat and torsion free.
In this case f [g] is a pre-Lie product generating the Jacobi bracket: f [g] − g[f ] = [f, g]•, but in
general f [g]− g[f ] = [f, g]• − [f, g].

The product f•g is associative, and thus U(g)M with the binary operations f, g 7→ f [g] and
f, g 7→ f•g forms a unital dipterous algebra [33], however, it has more structure than this. Fol-
lowing [42] we define:

Definition 4.11. Let A = I⊕A be a unital associative algebra with product f, g 7→ fg, and also
equipped with a non-associative composition f, g 7→ f [g] : A×A → A. Let D(A) denote all f ∈ A
such that f [·] is a derivation:

D(A) = { f ∈ A | f [gh] = (f [g])h+ g(f [h]) }.
We assume that D(A) generates A. We call A a D-algebra if for any derivation f ∈ D(A) and
any g, h ∈ A we have

g[f ] ∈ D(A)

I[g] = g

f [g[h]] = (fg)[h] + (f [g])[h].

(4.20)
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Definition 4.12. A D-algebra homomorphism is a map F : A → A′ between D-algebras such
that F(D(A)) ⊂ D(A′) and for all g, h ∈ A we have

F(I) = I
F(gh) = F(g)F(h)

F(g([h]) = F(g)[F(h)].

(4.21)

4.3.2 The free D-algebra and elementary differentials

The following definitions are detailed in [42]. Let OT denote the alphabet of all ordered (planar)
rooted trees:

OT = { , , , , , , , , . . .}.
More generally, we consider decorated ordered rooted trees, where C is a (finite or infinite) set
of colors. Decorated trees are trees with a color from C assigned to each node. As above, we
let OT∗ denote words of trees (forests), let I be the empty word and let ω1, ω2 7→ ω1ω2 denote
concatenation for ω1, ω2 ∈ OT∗. Identifying C ⊂ OT with 1-node trees, we can recursively build
all words in OT∗ from C by concatenation and adding roots. For c ∈ C and ω ∈ OT∗, define
B+
c (ω) ∈ OT as the tree with branches ω and root c. Often we will be interested in the case where
C = { }, just one color.

As above, let R〈OT〉 denote real polynomials (finite R-linear combinations of words) and
R〈〈OT〉〉 the dual space of infinite series, such as

α = α(I)I + α( ) + α( ) + α( ) + α( ) + α( ) + α( ) + α( ) + α( ) + · · · .

On R〈OT〉 we define left grafting (·)[·] : R〈OT〉×R〈OT〉 → R〈OT〉 by extending the following
definition for trees by linearity. For all c ∈ C, all τ ∈ OT and all ω, ω′ ∈ OT∗ we define:

ω[c] = B+
c (ω)

I[ω] = ω

τ [ωω′] = τ [ω]ω′ + ω(τ [ω′])

τ [ω[ω′]] = (τω)[ω′] + (τ [ω])[ω′].

(4.22)

Compare this with Lemma 4.10. The left grafting τ [ω] is obtained by attaching τ in all possible
ways from the left to the vertices of ω, and (ττ ′)[ω] is obtained by attaching from the left first τ ′

and then τ on all nodes of ω:

[ ]
= + + + + +

[ ]
= + + + + + + + + .

We henceforth let |ω| denote the grading counting the total number of nodes, i.e. |c| = 1 for all
c ∈ C, |ωω′| = |ω|+ |ω′| and |ω[ω′]| = |ω|+ |ω′|.
Proposition 4.13. Let OT be planar trees decorated with colors C. Consider N = R〈OT〉 with
concatenation ω, ω′ 7→ ωω′, left grafting ω, ω′ 7→ ω[ω′] and unit I as defined above. N is a free
D-algebra over C, such that for any D-algebra A and any map ν : C → D(A) there exists a unique
D-algebra homomorphism map Fν : N → A such that Fν(c) = ν(c) for all c ∈ C.

C ⊂ - N

D(A)

ν
?

⊂ - A

∃ ! Fν
?
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Definition 4.14. We define the ordered Grossman–Larson4 product on N for all ω, ω′ ∈ OT∗ as

ω•ω′ = B−(ω[B+(ω′)]).

I.e. we add a root to ω′, graft on ω and finally remove the root again.

Proposition 4.15. The GL-product is associative and, for all n, n′, n′′ ∈ N , satisfies

n[n′[n′′]] = (n•n′)[n′′] (4.23)

Fν(n•n′) = Fν(n)•Fν(n′). (4.24)

Remark 4.16. The classical setting of Cayley, Merson and Butcher is the case where M = Rn
and g = {∂/∂xi} ⊂ XM is the standard commutative coordinate frame. The construction of
Section 4.3.1 produces U(g)M as a D-algebra where the concatenation is commutative. The
connection is now flat and torsionless, and f [g] becomes a pre-Lie product. The images of the
trees F(τ), for τ ∈ OT, are called the elementary differentials in Butcher’s theory (see [8]). These
are explicitly given in (2.3). The images of the forests F(ω), for ω ∈ OT∗, are called elementary
differential operators in Merson’s theory (see [36]).

4.3.3 A generalized Connes–Kreimer Hopf algebra of planar trees

We recall from [42] the definition of the Hopf algebra HN . On the vector space R〈OT〉 we define
the shuffle product �, and we define the coproduct ∆N as the dual of the ordered GL product,
such that

(α•β)(ω) =
∑

(ω)∆N

α(ω(1))β(ω(2)) for all α, β ∈ R〈〈OT〉〉}. (4.25)

The motivation for this construction is the representation of U(XM) in terms of a frame g ⊂ XM
as U(g)M. The shuffle product is the correct product to characterize which series in R〈〈OT〉〉
represent vector fields on M and which represent diffeomorphisms. The composition in U(XM)
appears as the product • on U(g)M, thus with the coproduct ∆N the convolution on R〈〈OT〉〉
represents composition in U(XM).

It remains to give a precise characterization of ∆N and the antipode in HN . As in the Connes–
Kreimer case, both ∆N and the antipode can be defined directly in terms of admissible cuts or in
a recursive fashion. Recursively ∆N is given as

∆N (I) = I⊗I,
∆N (ωτ) = ωτ⊗I + ∆N (ω)� ·(I⊗B+

c )∆N (ω1),
(4.26)

where τ = B+
c (ω1) ∈ OT, where ω, ω1 ∈ OT∗ and where �· denotes shuffle on the left and

concatenation on the right: (ω1⊗τ1)� ·(ω2⊗τ2) = (ω1 � ω2)⊗(τ1τ2). The direct formula is

∆N (ω) =
∑

`∈FALC(ω)

P `(ω)⊗R`(ω), (4.27)

where FALC denotes Full Admissible Left Cuts, P `(ω) is the shuffle of all the cut off parts, and
R`(ω) is the remaining part containing the root (see [42]). Calculations of the coproduct for forests
up to order 4 can be found in Table 1.

Theorem 4.17. Let HN be the vector space N = R〈OT〉 with the operations

product : µN (a⊗b) = a� b,

coproduct : ∆N ,

unit : uN (1) = I,

counit : eN (ω) =

{
1, if ω = I,
0, else.

4The GL product is usually defined in a similar way over non-planar trees.
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Then HN is a Hopf algebra with an antipode SN given by the recursion

SN (I) = I,
SN (ωτ) = −µN

(
(SN⊗I)

(
∆N (ω)� ·(I⊗B+

i )∆N (ω1)
))
,

(4.28)

where τ = B+
i (ω1) ∈ OT and ω, ω1 ∈ OT∗.

4.3.4 Lie–Butcher series and flows on manifolds

The set of maps U(g)M from M to U(g) is a D-algebra where the derivations are the vector
fields gM. Thus, given a set of colors C and a map ν : C → gM there exists a unique map
Fν : N → U(g)M such that for all c ∈ C and all g, h ∈ N we have

Fν(c) = ν(c)

Fν(I) = I
Fν(gh) = Fν(g)Fν(h)

Fν(g[h]) = Fν(g)[Fν(h)]

Fν(g•h) = Fν(g)•Fν(h).

(4.29)

Definition 4.18. For an infinite series α ∈ N ∗ = R〈〈OT〉〉 a Lie–Butcher series is a formal series
in U(g)M defined as

Bt(α) =
∑

ω∈OT∗
t|ω|α(ω)Fν(ω).

Note that N can be turned into a Hopf algebra two different ways: either as HSh with product �
and deconcatenation coproduct ∆d, or as HN with the same product �, but where the coproduct
∆N is the dual of the ordered GL product. This gives rise to two different convolutions on N ∗,
the frozen composition α, β 7→ αβ in Example 3.9, and the non-frozen composition α, β 7→ α•β
as in (4.25). Since the product is the same, we have that the characters and the infinitesimal
characters are the same as vector spaces

g(HSh) = g(HN ) = {α ∈ N | α(I) = 0, α(ω� ω′) = 0 for all ω, ω′ ∈ OT∗ \I }
G(HSh) = G(HN ) = {α ∈ N | α(I) = 1, α(ω� ω′) = α(ω)α(ω′) for all ω, ω′ ∈ OT∗ }.

Hovever, the exponential, logarithm, Dynkin and Eulerian idempotents, as well as the antipode
depend on whether they are based on HSh or HN . Which to use in practice depends on which
operation we want to express on the manifold. Recall that frozen elements of U(g)M are constant
functions g : M→ U(g). If g is frozen then f [g] = 0 for all f , and hence f•g = fg. The subalgebra
of frozen vector fields therefore reduces to HSh.

We summarize the basic properties of LB-series: Bt sends infinitesimal characters to (formal)
vector fields on M and characters to pullback series representing formal diffeomorphisms on M.
LB-series preserve both frozen and non-frozen composition and sends left grafting to the connection
on U(g)M.

Bt(αβ) = Bt(α)Bt(β)

Bt(α•β) = Bt(α)•Bt(β)

Bt(α[β]) = Bt(α)[Bt(β)].

Note that if α ∈ G(HN ), then α[β] represents algebraically the pullback (parallel transport) of β
along the flow of α. On the manifold

Bh(α[β])(y0) = Bh(α)[Bh(β)](y0) = Bh(β)(Φ(y0)),

where Φ is the diffeomorphism represented by α ∈ G(HN ) at t = h. Since the connection is flat,
the pullback depends only on the endpoint Φ(y0) and not on the actual path.

There are (at least) three ways to represent a flow y0 7→ yt = Φt(y0) on M, using LB-series:
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1. In terms of pullback series. Find α ∈ G(HN ) such that

ψ(y(t)) = Bt(α)(y0)[ψ] for any ψ ∈ U(g)M. (4.30)

This representation is used in the analysis of Crouch–Grossman methods by Owren and
Marthinsen [45]. In the classical setting, this is called a S-series [43].

2. In terms of an autonomous differential equation. Find β ∈ g(HN ) such that y(t) solves

y′(t) = Bh(β)(y(t)). (4.31)

In the classical setting, this is called backward error analysis. In the Lie group setting, this
formulation has, however, never been investigated in detail (but it should!).

3. In terms of a non-autonomous equation of Lie type (time dependent frozen vector field).
Find γ ∈ g(HSh) such that y(t) solves

y′(t) =

(
∂

∂t
Bt(γ)(y0)

)
y(t). (4.32)

This representation is used in [38, 39]. In the classical setting this is (almost) the standard
definition of B-series. The connection with the classical B-series is discussed below.

The algebraic relationship between α, β and γ is given as follows:

β = α◦e e is Euler idempotent in HN .

α = exp•(β) Exponential wrt. GL-product

γ = α◦Y −1◦D Dynkin idempotent in HSh(OT).

α = Q(γ) Q-operator (4.12) in HSh(OT).

Example 4.19. Two examples are of particular interest; the exact solution and exponential Euler
method. In both cases we consider y′(t) = f(y)·y, where C = { } and ν( ) = f .

The exponential Euler method is particularly simple. Since each step of the method follows
the flow the frozen vector field f(yn) ∈ g, the Type 3 LB-series for Exponential Euler must be
given by

γEuler =

just as in the classical setting5.
Type 3 LB-series for the exact solution can be derived in various ways. Theorem 2.2 in [39]

derives the exact solution as the solution of

y′ = ft ·y, y(0) = y0,

where ft = f(y(t)) ∈ g is the pullback of f along the time dependent flow of ft. Letting
ft = ∂

∂tBt(γ) we obtain

Y ◦γ = Q(γ)[ ]⇒ γ = Y −1◦B+(Q(γ)).

Note that this is reminiscent of a so-called combinatorial Dyson–Schwinger equation [24]. Solving
by iteration yields

γExact = +
1

2!
+

1

3!
( + ) +

1

4!
( + + 2 + + ) +

1

5!
( + + 2

+3 + + + 3 + 3 + 3 + + + 2 + + ) +

1

6!
( + · · · ) + · · ·

5The classical presentation is γ = I + , when the B-series is given in the form (2.2).
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Remarkably, the LB-series of the exact solution is just a combination of trees, and not commutators
of trees. Thus in Type 3 LB-series developments of numerical integrators, commutators of trees
must be zero up to to the order of the method.

Composition and inverse is simplest for pullback series, Type 1. For series of Type 3, we map
to Type 1, compose (or invert) and map back again. If γ, γ̃ are series of Type 3, then the basic
operations are done as:

Composition: γ, γ̃ 7→ (Q(γ)•Q(γ̃))◦Y −1◦D (4.33)

Inverse : γ−1 = Q(γ)◦S◦Y −1◦D (4.34)

Backward error : Log3(γ) := Q(γ)◦e. (4.35)

4.3.5 Relations to classical B-series

The relation between classical B-series and LB-series is detailed in [42]. Classical B-series are
expressed in terms of linear combinations of non-planar trees T , resulting in the Connes–Kreimer
Hopf algebra HC built from non-planar trees [4]. In the classical setting the connection is torsion-
free, and concatenation is commutative. Therefore g(HC) = span(T ). That is, g(HC) is just linear
combinations of trees. This fact is the reason why many discussions in the classical setting can
avoid series involving forests of trees (words in T ∗). Also the difference between series of Type 1
and Type 3 is in not emphasized in many papers. Since the coefficients κ of the Q-polynomials
add up to one under symmetrization, we find in the classical setting that

Q(α)(ω) = α(τ1)α(τ2) · · ·α(τk)ω,

for ω = B+(τ1τ2 · · · τk), so formulas involving pullbacks are often expressed directly from B-series
(Type 3) using the Q-polynomials in this form. Our claim that classical B-series fits best into
series of Type 3 is based on the trivial observation that the curve yt = Bt(γ)(y) in (4.32) solves a
differential equation with a time dependent frozen vector field given as

y(t) =
∂

∂t

∑

τ∈T

t|τ |

σ(τ)
F(τ).

One can ask why the symmetrization σ(τ) is natural to include in the classical setting, but not
in the LB-series setting. To explain the relationship between the two theories we define a sym-
metrization operator:

Definition 4.20. The symmetrization operator Ω : N → N is defined for ω ∈ OT∗ and τ ∈ OT
as

Ω(I) = I,
Ω(ωτ) = Ω(ω)� Ω(τ),

Ω(B+
i (ω)) = B+

i (Ω(ω)).

The shuffle product permutes the trees in a forest in all possible ways, and the symmetrization of
a tree is a recursive splitting in sums over all permutations of the branches. The symmetrization
defines an equivalence relation on OT∗, that is

Ω(ω1) = Ω(ω2) ⇐⇒ ω1 ∼ ω2.

Let ι : HC → HN be an inclusion where a tree is identified with one of its equivalent planar trees.
In [42] we show that Ω̃ = Ω◦ι : HC → HN is a Hopf algebra isomorphism onto its image, i.e. HC
is a proper subalgebra of HN . The adjoint map Ω̃∗ : H∗N → H∗C is given as

Ω̃∗(α)(ω) = σ(ω)
∑

ω′∼ω
α(ω′).

The tree symmetrization σ(ω) enters exactly such that the LB-series as given in (4.18) maps to
the classical B-series in (2.2).
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4.4 Substitution law for LB-series

The so-called substitution law for B-series [14] can without much difficulty be generalized to
LB series. Consider N as a D-algebra where the derivations are the Lie polynomials D(N ) =
g(HN ) ∩ N . By the universality property of N , we know that for any map a : C → D(N ) there
exists a unique D-algebra homomorphism Fa : N → N such that Fa(c) = a(c) for all a ∈ C. This
is called the substitution law.

Definition 4.21. For any map a : C → D(N )
there exists a unique D-algebra homomorphism
a? : N → N such that a(c) = a ? c for all c ∈ C.
The map a? is called a-substitution 6.

C ⊂ - N

D(N )

a
?

⊂- N .

a?

?

The properties of this substitution law, together with applications of it, will be studied in a
forthcoming paper ([34]). We just mention that many of the useful properties of the substitution
law follow immediately from the fact that a? : N → N is a homomorphism. For example, for all
n, n′ ∈ N we have:

a ? I = I
a ? (nn′) = (a ? n)(a ? n′)

a ? (n[n′]) = (a ? n)[a ? n′]

a ? (n•n′) = (a ? n)•(a ? n′)

5 Final remarks and outlook

Inspired by problems in numerical analysis we have discussed various algebraic structures arising
in the study of formal diffeomorphisms on manifolds. We have seen that the Connes–Kreimer Hopf
algebra naturally extends from commutative frames on Rn to non-commutative frames on general
manifolds. In particular we have presented the Dynkin and Euler operators and non-commutative
Faà di Bruno type bialgebras in this generalized setting.

The formalism in this paper has many applications in numerical analysis, and analysis of
Lie group integrators in particular. However, the underlying structures are general constructions
with possible applications in other fields, such as geometric control theory and sub-Riemannian
geometry. Connections to stochastic differential equations on manifolds is an other topic which is
worth investigating further.
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ω ∆N (ω)

I I⊗I
⊗I + I⊗

⊗I + ⊗ + I⊗
⊗I + ⊗ + I⊗

⊗I + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + I⊗

⊗I + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + I⊗
⊗I + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + 3 ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + 3 ⊗ + 2 ⊗ + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗
⊗I + ⊗ + ⊗ + ⊗ + I⊗

Table 1: Examples of the coproduct ∆N , defined in (4.26).
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Abstract

Butcher series are combinatorial devices used in the study of numerical methods for differ-
ential equations evolving on vector spaces. More precisely, they are formal series developments
of differential operators indexed over rooted trees, and can be used to represent a large class
of numerical methods. The theory of backward error analysis for differential equations has
a particularly nice description when applied to methods represented by Butcher series. For
the study of differential equations evolving on more general manifolds, a generalization of
Butcher series has been introduced, called Lie–Butcher series. This paper presents the theory
of backward error analysis for methods based on Lie–Butcher series.

1 Introduction

A fundamental tool in the field of numerical integration of ordinary differential equations on Rn
is the theory of Butcher series (B-series). These are formal series expansions of vector fields
and flows, expanded over the set of rooted trees. Many numerical methods can be formulated in
terms of B-series, and they can be used to, for example, study order theory, structure preserving
properties of integrators, backward error analysis and modified vector fields [3, 17, 8, 7, 10, 9, 23].
In the more general setting of differential equations of the form

y′ = F (y), y ∈M, F : M → TM, (1)

where M is a (homogeneous) manifold and F a vector field on M , the role of B-series is played by
the Lie–Butcher series (LB-series) [28, 22, 23]. Considering the importance of classical B-series,
LB-series are objects of great interest.

The B-series are based on the elementary differentials associated to vector fields, and these
can be constructed as homomorphisms from the free pre-Lie algebra (or Vinberg algebra) into the
pre-Lie algebra of vector fields [5]. In the setting of LB-series we get a similar picture, only now
the pre-Lie algebras are replaced by the so-called post-Lie algebras, defined in [34, 27].

In the present paper we will explore the substitution law for Lie–Butcher series, formulated
in the language of enveloping algebras of post-Lie algebras: the D-algebras of [28]. Once the
substitution law is understood, it can be applied to backward error analysis. The basic idea of
backward error analysis is to interpret the numerical solution of a differential equation as the
exact solution of a modified equation, and then use this equation to study the numerical method.
Analogous to classical backward error analysis (as developed in [16, 17, 8, 5]), its generalization to
the Lie group setting has a particularly nice description for methods based on Lie–Butcher series.

∗Corresponding author. Department of Mathematical Sciences, Norwegian University of Science and Technology,
N-7491 Trondheim, Norway. alexander.lundervold@gmail.com
†Department of Mathematics, University of Bergen, N-5020 Bergen, Norway. hans.munthe-kaas@math.uib.no
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Note that the construction of series expansions in the present paper is purely formal: there will
be no study of convergence. This separation between the algebraic and the analytic framework for
backward error analysis is also present in the setting of B-series, where the main algebraic references
are [17, 8, 5, 9] and the analytic references are [1, 32, 17]. An analytic study of backward error
analysis for Lie group methods can be found in [14].

The present study of the backward error and substitution law for Lie group integrators is
interesting from a purely algebraic point of view, as this work provides an explicit description
of automorphisms of post-Lie algebras. From a numerical point of view, the theory has several
applications. The algebraic structures of backward error analysis is important in the analysis
of numerical integration algorithms. Additionally, in the case of classical B-series, such algebraic
techniques have recently been applied more directly as a computational tool [8]. Similar techniques
in the setting of Lie group integrators is a promising approach to structure preserving integration
of problems of computational mechanics, such as Lie-Poisson systems.

2 Lie–Butcher series

In this section we will define D-algebras, and show how they give rise to Lie–Butcher series. In the
next section we will apply them to the study of the substitution law and backward error analysis
for Lie group integrators on manifolds.

2.1 Trees and D-algebras

Ordered rooted trees and forests. Some basic definitions follow. For a more comprehensive
introduction to the combinatorics of trees applied to numerical integration, see [4] or [19]. Let OT
denote the alphabet of all ordered (i.e. planar) rooted trees:

OT = { , , , , , , , , . . .}.

The root is the bottom vertex and we consider the trees to grow upwards from the root. The

trees being ordered implies that 6= . This is different from classical B-series theory, where
the order of the branches is of no significance. Let OF denote the set of ordered forests, i.e. all
possible empty and non-empty words written with letters from the alphabet OT:

OF =



I, , , , , , , , , · · ·



 ,

where I denotes the empty word. On OF we define the concatenation product ω1, ω2 7→ ω1ω2, which
creates a longer word by joining ω1 and ω2 end-to-end. This is an associative, non-commutative
product with unit I. Let B+ : OF → OT denote the operation of adding a root to a word, e.g.

B+( ) = . All of OF is generated from I by concatenation and adding roots. The order
of a forest, |ω| = |τ1 . . . τk|, is defined by the recursion |I| = 0, |τ1 . . . τk| = |τ1| + · · · + |τk|,
|B+ω| = |ω| + 1, i.e. the order counts the number of vertices in a forest. Let k be a field of
characteristic 0, e.g. k = R or k = C. The k-vector space of all finite k-linear combinations of
elements in OF is the non-commutative polynomial ring over OT 1, denoted by N = k〈OT〉. The
k-vector space of infinite linear combinations of OF is N ∗ = k〈〈OT〉〉. N ∗ is the dual space of N ,
with the dual pairing 〈·, ·〉 : N ∗ ×N → k defined such that the words in OF form a orthonormal
basis: 〈ω1, ω2〉 = 0 if ω1 6= ω2, and 〈ω, ω〉 = 1. Thus for a ∈ N ∗ we have a(ω) = 〈a, ω〉 and

1N with concatenation product can equivalently be defined as the linear space spanned by trees, V = k{OT},
equipped with a tensor product. Hence N can be defined as the tensor algebra on V . However, because we need
other tensor products later we prefer the definition via concatenation of words.
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a =
∑
ω∈OF a(ω)ω. In the latter sum we understand N ∗ as the projective limit N ∗ = lim←−Nk,

where Nk = span{ω ∈ OF: |ω| ≤ k}. An infinite a ∈ N ∗ is uniquely defined by its finite
projections ak ∈ Nk for all k ∈ Z, where ak =

∑
|ω|≤k a(ω)ω is the orthogonal projection of a onto

the subspace Nk ⊂ N .

Remark 2.1. In many applications it is necessary to generalize to spaces built from trees with
colored vertices. The theory extends from the above presentation with only minor modifications.
Let C be a (finite or infinite) set of colors. A coloring of a tree or a forest is a map from its
vertices to C. Let OTC and OFC denote colored trees and forests. For each c ∈ C we have the
operation B+

c : OFC → OTC creating a tree by adding a root of color c to a word. We identify
C ⊂ OTC ⊂ OFC as the subset of single vertex trees. In the colored context we permit more
general gradings | · | on OTC . We allow the assignment of arbitrary positive integer weights
|c| ∈ N to the single vertex trees C ⊂ OTC , extended to OFC by |τ1 . . . τk| = |τ1| + · · · + |τk| and
|B+
c ω| = |ω|+ |c|. The definitions of finite and infinite linear combinations of forests NC = k〈OTC〉

and N ∗C = k〈〈OTC〉〉 are similar to the uni-color case.

Definition 2.2. The left grafting product · y · : N ⊗ N → N is defined recursively as follows:
let τ ∈ OT and ω, ω1, ω2 ∈ OF. Then

I y ω = ω

τ y I = 0

ω y = B+(ω),

τ y (ω1ω2) = (τ y ω1)ω2 + ω1(τ y ω2)

(τω) y ω1 = τ y (ω y ω1)− (τ y ω) y ω1

The product is extended to all of N and N ∗ by linearity and projective limits.

For example,

y = + 2 +

Note that grafting satisfies a Leibniz rule with respect to the concatenation product. If we define
τ�ω = τω + τ y ω, we see that τ y (ω y ω1) = (τ�ω) y ω1. More generally, ω1 y (ω2 y ω) =
(ω1�ω2) y ω, where � is the associative product defined as follows:

Definition 2.3. The Grossman-Larson product � : N ⊗ N → N of ω1, ω2 ∈ OF is defined in
terms of the grafting product as:

B+(ω1�ω2) = ω1 y B+(ω2),

and is extended by linearity.

It is clear that if we write ω1[ω2] for ω1 y ω2, we have the following structure on N :

Definition 2.4 ([28]). Let A be a unital associative algebra with product f, g 7→ fg, unit I and
equipped with a non-associative composition (.)[.] : A ⊗ A → A such that I[g] = g for all g ∈ A.
Write D(A) for the set of all f ∈ A such that f [·] is a derivation:

D(A) = {f ∈ A | f [gh] = (f [g])h+ g(f [h]) for all g, h ∈ A}.

Then A is called a D-algebra if for any derivation f ∈ D(A) and any g ∈ A we have

(i) g[f ] ∈ D(A)

(ii) f [g[h]] = (fg)[h] + (f [g])[h].

3



The free D-algebra. We note that a morphism F : A → A′ of D-algebras is an algebra
morphism satisfying F(D(A)) ⊂ D(A′) and F(a[b]) = F(a)[F(b)] for all a, b ∈ A. The D-algebra
N plays a special role: it is a universal object.

Proposition 2.5 ([28]). Let OT be planar trees decorated with colors C. The vector space N =
R〈OT〉 is a free D-algebra over C. That is, for any D-algebra A and any map ν : C → D(A) there
exists a unique D-algebra homomorphism Fν : N → A such that Fν(c) = ν(c) for all c ∈ C.

C ⊂ - N

D(A)

ν
?

⊂ - A

∃ ! Fν
?

We will see that based on this result we can construct elementary differentials and Lie–Butcher
series for Lie group integrators, and also define the substitution law. To achieve this we utilize
D-algebra structure of differential operators on manifolds [28].

The D-algebra of differential operators. There is a D-algebra based on the space of vector
fields2 on the manifold M . Consider the space C∞(M, g) =: gM , where g ⊂ XM is a Lie sub-
algebra of the set of all vector fields on M . For Ψ ∈ gM and V ∈ g, the Lie derivative V [Ψ] ∈ gM

of Ψ along V defined by

V [Ψ](p) :=
d

dt
| t=0 Ψ(exp(tV )(p)). (2)

V [·] is a first order differential operator on gM , satisfying V [hΨ] = V [h]Ψ + hV [Ψ], where h ∈
C∞(M,R) is a scalar function3. The Lie derivative gives rise to differential operators of higher
degrees through concatenation: the concatenation of V,W ∈ g is a second-degree differential
operator defined by VW [Ψ] := V [W [Ψ]]. The C∞(M,R)-module of all differential operators,
including the ones of higher degree, and the degree zero operator spanned by the identity operator
I, is called the universal enveloping algebra U(g) of g. We extend the structure to the space
C∞(M,U(g)) =: U(g)M as follows: for f, g ∈ U(g)M , f [g] ∈ U(g)M is defined by

f [g](p) := (f(p)[g])(p) (3)

and fg ∈ U(g)M is defined as
fg(p) := f(p)g(p). (4)

The latter operation is called the frozen composition of f and g. For two vector fields f and g
written in terms of the standard coordinate frame {∂/∂xi}, the operations take the following form:

f [g] =
∑

i,j

fj
∂gi
∂xj

∂

∂xi
(5)

fg =
∑

i,j

figj
∂

∂xi

∂

∂xj
(6)

The operations (3) and (4) endows the space U(g)M with the structure of a D-algebra, where
the derivations are the vector fields in gM :

Lemma 2.6. Let f ∈ gM and g, h ∈ U(g)M . Then

f [gh] = f [g]h+ g(f [h])

f [g[h]] = (fg)[h] + f [g][h].

Hence U(g)M is a D-algebra.

2The vector fields are interpreted as differential operators acting on functions.
3This is true when gM is replaced by ΞM for any vector space Ξ.
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The composition of f and g as differential operators, defined by (f�g)[h] := f [g[h]], is called
non-frozen composition.4

Post-Lie algebras. The theory of Lie–Butcher series can be reformulated in terms of post-Lie
algebras. These were first studied in the setting of operads by Vallette [34], and also by the authors
in [27]. Our main motivation for the construction of post-Lie algebras was their relation to the
D-algebras defined above, which are universal enveloping algebras of post-Lie algebras.

2.2 Lie–Butcher series

Classical B-series. Recall (see e.g. [17]) that a B-series is a (formal) series indexed over the
set NT of non-planar rooted trees (i.e. trees without any ordering of the branches) and can for a
vector field f be written as

Bh,f (a)(y) = a(I)y +
∑

τ∈NT

h|τ |

σ(τ)
a(τ)Ff (τ)(y). (7)

Here σ(τ) is the symmetry factor for τ ∈ NT, and a is a map a : NT→ R. The map Ff (τ) : Rn →
Rn is the elementary differential of the tree τ , obtained recursively from f and its derivatives:

Ff ( )(y) = f(y), Ff (τ)(y) = f (m)(y)(Ff (τ1)(y), ...,Ff (τm)(y)), (8)

where τ = B+(τ1, . . . τm) and f (m) is the mth derivative of the vector field. The parameter h
represents the step-size of the numerical method giving rise to the B-series.

LB-series. We will consider a more general setting: that of differential equations evolving on
manifolds. Let M be a manifold and XM the Lie algebra of vector fields F : M → TM on M .
The fundamental assumption for numerical Lie group integrators is the existence of a frame on
TM , defined as a finite number of vector fields {E1, E2, . . . , Em} spanning the tangent space TpM
at each point p ∈ M . The frame is allowed to be overdetermined. It generates a Lie algebra g,
and it is assumed that flows of vector fields in g can be computed exactly [25, 31]. Any vector
field F : M → TM can be written as F (p) =

∑
aiEi(p). We will study vector fields of the form

F (p) =
∑
fi(p)Ei(p) where fi : M → R are smooth functions. Given such a vector field, let

f ∈ gM be defined as fp =
∑
fi(p)Ei. We say that fp has coefficients frozen relative to the frame.

In other words, to each such F ∈ XM there is an associated f ∈ gM so that F (p) = fp · p, where
fp · p denotes evaluation of fp in p. We will often refer to such f ∈ gM as vector fields.

The general differential equation (1) can now be written as

y′ = fy · y, where f ∈ gM . (9)

The Lie–Butcher series are expansions over OT associated to integrators of this equation, just as
B-series are associated to differential equations expressing the flow of vector fields in Rn. The
non-commutativity of combining vector fields is reflected in the planarity of the trees in OT.

Now we can construct the elementary differentials needed to define Lie–Butcher series. As in
the classical case they can be expressed recursively by a function F based on trees.

Definition 2.7. The elementary differentials associated to a vector field f : M → g is the D-
algebra morphism Ff : N → U(g)M we get from Proposition 2.5 by associating the tree to f
(i.e. C = { } and ν : 7→ f in Proposition 2.5). Hence Ff is defined by

(i) Ff (I) = I

(ii) Ff (B+(ω)) = Ff (ω)[f ]

4We note that the two operations f, g 7→ f [g] and f, g 7→ f�g gives U(g)M the structure of a unital dipterous
algebra (as defined in [21]).
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(iii) Ff (ω1ω2) = Ff (ω1)Ff (ω2)

When the vector field f is clear from the context we will occasionally write F instead of Ff .

Definition 2.8. For an infinite series α ∈ N ∗ = R〈〈OT〉〉 a Lie–Butcher series is a formal series
in U(g)M defined as

Bf (α) =
∑

ω∈OF

α(ω)F(ω).

For a vector field f this can also be written as the commutative diagram

{ } ⊂ - N ∗

gM

f
?

⊂- U(g)M

Bf
?

where Bf is the unique D-algebra homomorphism given by Proposition 2.5.

Remark 2.9. By coloring the vertices of the trees vi a map ν we can define F and B for multiple
vector fields. The elementary differentials Fν are still obtained from Proposition 2.5, but the set
C will contain multiple colors.

2.3 Some algebraic constructions

Before we show how LB-series can be used to represent flows of vector fields on manifolds we must
conduct a closer study of the space where the coefficients α live. To understand the various ways
we can represent such flows it will also be helpful to look at some Lie idempotents, namely the
eulerian and Dynkin idempotents (Section 2.3.2), and also certain non-commutative polynomials
called Bell polynomials (Section 2.3.3). We will follow the presentation in [28] and [22].

2.3.1 The Hopf algebras HSh and HN
It is well known that inserting a B-series Bh,f (a) into another series Bh,f (b) results in a B-series
Bh,f (a)(Bh,f (b)(y)) = Bh,f (a · b)(y). The product a · b on the set of maps a : OT → R with
a(I) = 1 gives rise to a group, called the Butcher group [3, 18]. This is the group of characters in a
variant of the Connes–Kreimer Hopf algebra of renormalization [11, 2]. A similar result holds for
LB-series, where the Hopf algebra of Connes–Kreimer is replaced by a more general Hopf algebraic
structure on the set of rooted trees. This Hopf algebra was introduced in [28]. See also [22, 23].

Note first that the vector space R〈OT〉 spanned by trees can be turned into a Hopf algebra by
using concatenation as product and deshuffling as coproduct. The deshuffling coproduct ∆Sh is
results from requiring the trees to be primitive, and extending by concatenation:

∆Sh(τ) = τ ⊗ I + I⊗ τ, ∆Sh(τ1τ2) = ∆Sh(τ1)∆Sh(τ2),

where τ , τ1, τ2 are trees. The antipode is defined by

S(τ1τ2 · · · τn) = (−1)nτnτn−1 · · · τ1,
and the unit η and counit ε by η(1) = I, and ε(I) = 1, ε(ω) = 0, for all ω ∈ OF \I.

The vector space N = R〈OT〉 can also be turned into an algebra using the shuffle product
� : N ⊗N → N defined recursively by I� ω = ω = ω� I and

(τ1ω1)� (τ2ω2) = τ1(ω1 � τ2ω2) + τ2(τ1ω1 � ω2) (10)

for τ1, τ2 ∈ OT, ω1, ω2 ∈ OF.5 This algebra can be given the structure of a bialgebra in several
different ways. We can equip it with the coproduct ∆c : N → N ⊗N given by deconcatenation of
words:

∆c(w) = I⊗ w + w ⊗ I +
n−1∑

i=1

τ1 · · · τi ⊗ τi+1 · · · τn, (11)

5Coproducts will occasionally be written using the Sweedler notation ∆(ω) =
∑

ω(1) ⊗ ω(2).
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where ω = τ1 · · · τn. This results in the shuffle bialgebra, which equipped with the same antipode,
unit and counit as the deshuffle Hopf algebra defines the shuffle Hopf algebra HSh.6

If we instead equipN with the coproduct ∆N : N → N⊗N defined recursively as ∆N (I) = I⊗I
and

∆N (ωτ) = ωτ ⊗ I + ∆N (ω)� · (I ⊗B+)∆N (B−(τ)), (12)

where τ ∈ OT, ω ∈ OF, we get another bialgebra HN . Here � · : N⊗4 → N ⊗N denotes shuffle
on the left and concatenation on the right: (ω1 ⊗ ω2) � · (ω3 ⊗ ω4) = (ω1 � ω3) ⊗ (ω2ω4). An
explicit description of the coproduct in terms of tree cuts can be found in Section 3.1 below, and
in [28], where it was shown that ∆N is the dual of the Grossman-Larson product and that HN
forms a Hopf algebra.7 This is the Hopf algebra governing composition of LB-series (Theorem
2.10).

To simplify the expressions we introduce a magmatic structure (i.e. the structure of a set
equipped with a closed binary operation with no further relations) on OF. Additional details and
motivation for the introduction of this structure can be found in Section 4. Let ω1, ω2 be two
elements of OF and define the operation × : OF×OF→ OF by

ω1 × ω2 = ω1B
+(ω2). (13)

For example,

× =

This operation is magmatic, and the empty tree I freely generates all of OF. The operation is
extended to N = R〈OT〉 via linearity. If ω = v1 × v2, ω 6= I, then we call v1 the left part ωL of ω
and v2 the right part ωR. The shuffle of two elements of the magma can be defined as

v� ω = (v� ωL)× vR + (vL � ω)× ωR, (14)

ω� I = I� ω = ω, and we notice that the coproduct in HN can be written as

∆N (ω) = ω ⊗ I + ∆N (ωL)�×∆N (ωR), (15)

where �× now denotes shuffle on the left, magma operation on the right.

Characters and the composition of LB-series. Recall that a character of a Hopf algebra
(H,∆, ·) over a field k is an algebra morphism α : H → k, e.g. α(a · b) = α(a)α(b), and α(1H) = 1,
where a, b ∈ H, and 1H denotes the unit. The convolution product α ∗ β of two characters is
defined by

H
∆−→ H ⊗H α⊗β−→ k⊗ k→ k .

This gives the set of characters G(H) of H the structure of a group. In fact, the field k can
be replaced by any commutative algebra A, giving rise to A-valued characters. Another type of
character we will need later are the infinitesimal characters. An A-valued infinitesimal character
is a linear map α : H → A satisfying

α(h · h′) = µA(α(h), δ(h′)) + µA(δ(h), α(h′)), (16)

where µA is the product in A and δ is the composition of the counit of H and the unit of A,
δ = ηA ◦ ε. The characters and infinitesimal characters are connected via the exponential and
logarithm, see e.g. [24].

The group structure of the characters in HN exactly corresponds to the composition of LB-
series.

Theorem 2.10 ([28]). The composition of two LB-series is again a LB-series:

Bf (α)[Bf (β)] = Bf (α ∗ β),

where ∗ is the convolution product in HN .

6Note that the concatenation deshuffling Hopf algebra is dual to the shuffle deconcatenation Hopf algebra.
7Being a graded and connected bialgebra HN is automatically a Hopf algebra. A more direct argument, and

formulas for the antipode, can be found in [28]
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2.3.2 Lie idempotents

A Lie polynomial over an algebra A is an element of the smallest submodule of R〈A〉 that is closed
under the bracket [P,Q] := PQ−QP in R〈A〉. The Lie algebra of these polynomials is the free Lie
algebra Lie(A) on A [33]. There are several important idempotent maps, called Lie idempotents,
from R〈A〉 to Lie(A).

Eulerian idempotent Let H be a commutative, connected and graded Hopf algebra. Consider
Endk(H) = Homk(H,H) equipped with the convolution product ∗. Let Id ∈ Endk(H) be the
identity endomorphism and δ = η ◦ ε ∈ Endk(H) the unit of convolution.

Definition 2.11 ([20]). The Eulerian idempotent e ∈ End(H) is given by the formal power series

e := log∗(Id) = J − J∗2

2
+
J∗3

3
+ · · · (−1)i+1 J

∗i

i
+ · · · ,

where J = Id−δ.
Proposition 2.12 ([20]). For any commutative graded Hopf algebra H, the element e ∈ Endk(H)
defined above is a Lie idempotent in H. That is, e ◦ e = e and it has image in the free Lie algebra.

The practical importance of the Eulerian idempotent in numerical analysis arises in the study
of backward error analysis, where the following lemma provides a computational formula for the
logarithm:

Proposition 2.13 ([22]). For α ∈ G(H) and h ∈ H, we have

log∗(α)(h) = α(e(h)).

In other words, the logarithm can be written as right composition with the eulerian idempotent:

log∗ = ◦ e : G(H)→ g(H).

Dynkin idempotent The classical Dynkin operator on the shuffle Hopf algebra is given by
left-to-right bracketing:

D(a1...an) = [. . . [[a1, a2], a3], . . . , an], where [ai, aj ] = aiaj − ajai.

Letting Y (ω) = #(ω)ω denote the grading operator, where #(ω) is word length, it is known
that the Dynkin idempotent Y −1 ◦ D is an idempotent projection on Lie(A). As in [12], the
Dynkin operator can be written as the convolution of the antipode S and the grading operator Y :
D = S ∗ Y . This description can be generalized to any graded, connected and commutative Hopf
algebra H:

Definition 2.14. Let H be a graded, commutative and connected Hopf algebra with grading
operator Y : H → H. The Dynkin operator is the map D : H → H given as

D := S ∗ Y.

2.3.3 The non-commutative Bell polynomials

In [26] some non-commutative polynomials Bn were introduced to express the Butcher order theory
of Runge-Kutta methods on manifolds. In [22] it was observed that these polynomials were a non-
commutative analogue of Bell polynomials, and that they could be used to study more general
flows on manifolds. We recall their definition here.

Let I = {dj}∞j=1 be an infinite alphabet in 1–1 correspondence with N+, and consider the free
associative algebra D = R〈I〉 with the grading given by |dj | = j and |dj1 · · · djk | = j1 + · · · + jk.
Let ∂ : D → D be the derivation given by ∂(di) = di+1, linearity and the Leibniz rule ∂(ω1ω2) =
∂(ω1)ω2 + ω1∂(ω2) for all ω1, ω2 ∈ I∗. We let #(ω) denote the length of the word ω.
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Definition 2.15. The non-commutative Bell polynomials Bn := Bn(d1, . . . , dn) ∈ D are defined
by the recursion

B0 = I
Bn = (d1 + ∂)Bn−1 = (d1 + ∂)nI for n > 0.

The first few are

B0 = I
B1 = d1

B2 = d2
1 + d2

B3 = d3
1 + 2d1d2 + d2d1 + d3

B4 = d4
1 + 3d2

1d2 + 2d1d2d1 + d2d
2
1 + 3d1d3 + d3d1 + 3d2d2 + d4.

We write Bn,k := Bn,k(d1, . . . , dn−k+1) for the part of Bn consisting of the words of length k, e.g.
B4,3 = 3d2

1d2 + 2d1d2d1 + d2d
2
1. It is often useful to employ the polynomials Qn and Qn,k related

to Bn and Bn,k by the following rescaling:

Qn,k(d1, . . . , dn−k+1) =
1

n!
Bn,k(1!d1, . . . , j!dj , . . .) =

∑

|ω|=n,#(ω)=k

κ(ω)ω (17)

Qn(d1, . . . , dn) =
n∑

k=1

Qn,k(d1, . . . , dn−k+1) (18)

Q0 := I. (19)

These polynomials can be used to define an operator Q on any graded Hopf algebra H. Let di be
defined on H∗ by

di(α) = αi = α|Hi , didj(α) = αi ∗ αj , (20)

where αi is the degree i component of α and ∗ is the convolution product. The operator Q is a
bijection from infinitesimal characters to characters of H (for details, see [22]).

2.4 Lie–Butcher series and flows of vector fields

Flows y0 7→ y(t) = Ψt(y0) on the manifold M can be represented by LB-series in several different
ways. Here are three procedures, giving rise to what we will call LB-series of Type 1, 2 and 3:

1. In terms of pullback series: Find α ∈ G(HN ) such that

Ψ(y(t)) = B(α)(y0)[Ψ] for any Ψ ∈ U(g)M . (21)

This representation is used in the analysis of Crouch–Grossman methods by Owren and
Marthinsen [31]. In the classical setting this is called a S-series [29].

2. In terms of an autonomous differential equation: Find β ∈ g(HN ) such that y(t) solves

y′(t) = B(β)(y(t)). (22)

This is called backward error analysis (confer Section 3.3).

3. In terms of a non-autonomous equation of Lie type (time dependent frozen vector field):
Find γ ∈ g(HSh) such that y(t) solves

y′(t) =

(
∂

∂t
B(γ)(y0)

)
y(t). (23)

This representation is used in [25, 26]. In the classical setting this is (close to) the standard
definition of B-series.
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The algebraic relationships between the coefficients α, β and γ in the above LB-series are [22]:

β = α◦e e is Euler idempotent in HN . (Proposition 2.13)

α = exp�(β) Exponential wrt. GL-product

γ = α◦Y −1◦D Dynkin idempotent in HSh. [22, Proposition 4.4]

α = Q(γ) Q-operator (20) in HSh. [22, Proposition 4.9]

By using these relationships one can convert between the various representations of flows.
In the notation in the following examples of LB-series we suppress the vector fields and ele-

mentary differentials, and phrase the LB-series in terms of the (dual of the) coefficient functions.

Example 2.16 (The exact solution). The exact solution of a differential equation

y′(t) = F (y(t))

can be written as the solution of
y′ = Ft ·y, y(0) = y0,

where Ft = F (y(t)) ∈ g is the pullback of F along the time dependent flow of F . Let Ft = ∂
∂tBt(γ).

By [22, Proposition 4.9] the pullback is given by Bt(Q(γExact))[F ], so

Y ◦γExact = Q(γExact)[ ]⇒ γExact = Y −1◦B+(Q(γExact)).

Note that this is reminiscent of a so-called combinatorial Dyson–Schwinger equation [15]. Solving
by iteration yields

γExact = +
1

2!
+

1

3!


 +


+

1

4!


 + + 2 + +


+

1

5!
( +

+2 + 3 + + + 3 + 3 + 3 + + + 2 + + ) +

1

6!

(
+ · · ·

)
+ · · ·

Note that a formula for the LB-series for the exact solution was given in [31]. We observe that
there cannot be any commutators of trees in this expression. Therefore, in LB-series of numerical
integrators, commutators of trees must be zero up to the order of the method.

Example 2.17 (The exponential Euler method). The exponential Euler method [19] can be
written as follows:

yn+1 = exp(hf(yn))yn,

or, by rescaling the vector field f , as

yn+1 = exp(f(yn))yn.

This equation can be interpreted as a pullback equation of the form Φ(yn+1) = B(exp( ))[Φ]yn, so

α = exp( ) = I + +
1

2!
+

1

3!
+ · · · .

(Here the Grossman-Larson product is the same as concatenation). Note that exp( ) = Q( ), so
the Type 3 LB-series for the Euler method is simply

γEuler = .
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Example 2.18 (The implicit midpoint method). The implicit midpoint method [19] can be pre-
sented as:

σ = f(exp(
1

2
σ)yn) (24)

yn+1 = exp(σ)yn (25)

We make the following ansatz:

σ =
∑

ω

α(ω)ω = α( ) + α
( )

+ α
( )

+ α
(

[ , ]
)

[ , ] + α




 + · · · , (26)

i.e. that σ can be written as an infinitesimal LB-series. From Equation 24, we get that

σ =
∞∑

j=0

(σ)j

2jj!
[ ]. (27)

Since there are no forests in this expression, we must have α([ω, ω′]) = 0 for all ω, ω′ ∈ OT. If we
write τ = B+(τ1 · · · τj), then by combining Equation 27 with the ansatz, we see that coefficients
of the LB-series are given recursively as α( ) = 1

2 ,

α(τ) =
1

2jj!
α(τ1) · · ·α(τj). (28)

Hence

αMidpoint = +
1

2!
+

1

2


1

4
+


+ · · ·

3 Substitution law for Lie–Butcher-series

In this section we will generalize the substitution law for B-series [7] to LB-series. Once the
substitution law has been established we will apply it to backward error analysis for numerical
methods based on LB-series.

3.1 The substitution law

Consider N as a D-algebra where the derivations are the Lie polynomials D(N ) = g(HN ) ∩ N .
By the universal property of N , we know that for any map a : C → D(N ) there exists a unique
D-algebra homomorphism Fa : N → N such that Fa(c) = a(c) for all a ∈ C. This is called the
substitution law.

Definition 3.1. For any map a : C → D(N ) the
unique D-algebra homomorphism a? : N → N
such that a(c) = a ? c for all c ∈ C is called
a-substitution8.

C ⊂ - N

D(N )

a
?

⊂- N .

a?

?

Theorem 3.2. The substitution law defined in Definition 3.1 corresponds to the substitution of
B-series in the sense that

BBf (β)(α) = Bf (β ? α)

8In most applications we want to substitute infinite series and extend a? to a homomorphism a? : N ∗ → N ∗.
The extension to infinite substitution is straightforward because of the grading, we omit details. We write a? also
for infinite substitution.
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The theorem is easily proven by using the following lemma:

Lemma 3.3. For all β : { } → D(N ∗) and all B-series Bf : N ∗ → U(g)M , the composition
Bf ◦ β has image in gM . In other words, B-series maps D(N ) to derivations on M .

Proof. It is enough to prove this for Lie polynomials 9. Since Bf is a D-algebra homomorphism
it maps trees to derivations, so the only thing we have to check is that the commutator [V,W ] =
VW −WV of two derivations V and W is a derivation. This is a straightforward calculation.

Proof of Theorem 3.2. Except for the use of Lemma 3.3, the proof is purely categorical. Let Bf
be a B-series. The composition of Bf with the map β? can be written in diagrammatic form as

{ } ⊂ - N ∗

D(N )

β
-

N ∗

β?

?

⊂

-

U(g)M

Bf?

By Lemma 3.3 the composition of the two diagonal arrows and Bf actually has image in gM .
Therefore the universal property for the diagram obtained by adding the map Bf ◦ β : { } → gM

to the above diagram shows that Bf ◦ β? = BBf◦β , and hence the theorem.

Many of the useful properties of the substitution law follow immediately from the fact that a?
is a D-algebra homomorphism. For example, a? : N → N is a linear map which for any n, n′ ∈ N
satisfies

a ? I = I
a ? (nn′) = (a ? n)(a ? n′)

a ? (ny n′) = (a ? n) y (a ? n′)

a ? (n�n′) = (a ? n)�(a ? n′)
a ? (n◦S) = (a ? n)◦S
a ? (n◦e) = (a ? n)◦e

where S is the antipode and e is Euler map in HN .
The free D-algebra N is the universal enveloping algebra of the free post-Lie algebra g of rooted

trees [27]. By defining a coproduct by requiring that the elements of g are primitive (e.g. the
deshuffle coproduct of Section 2.3.1), it is a bialgebra. The unique D-algebra morphism a? is a
coalgebra morphism for this coproduct:

Lemma 3.4. The map a? is a coalgebra morphism with respect to the coproduct given by deshuf-
fling of words (Section 2.3.1). That is,

(a ?⊗a?) ◦∆Sh = ∆Sh ◦ a?,

where ∆Sh denotes the deshuffling coproduct.

Proof. The result is easily proven for primitive elements. The general case follows by induction
on the length of words.

9Lie series are formal series whose homogeneous components are Lie polynomials [33]
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Remark 3.5 (The Hopf algebra for the substitution law). Based on the results in [5] and the fact
that the operad governing post-Lie algebras is known, it is possible to describe the Hopf algebra for
the substitution law following the program in [5]. This is a project currently under development
[13].

3.2 A formula for the substitution law

The substitution law can be calculated recursively using a formula involving trees. To write down
the formula we need to look at cutting operations on trees and forests.

Cutting trees and forest. Let τ ∈ OT be an ordered rooted tree. An elementary left cut c of
τ is a choice of a set of branches E of τ to be removed from τ . These are chosen in a systematic
manner: if an edge e is in E then all the branches on the same level and to the left of e must
also be in E. Each cut splits τ into two components: the pruned part P cel(τ) consisting of the
trees that were cut off concatenated together, and the remaining part Rcel(τ) consisting of the
tree containing the root. We also consider the empty cut, i.e. the cut c so that P cel(τ) = I and
Rcel(τ) = τ , to be an elementary cut.

τ = P cel(τ) Rcel(τ)

I

A left admissible cut on τ consists of a collection of elementary cuts applied to τ with the property
that any path from the root to any vertex of τ crosses at most one elementary cut. The pruned
parts corresponding to each elementary cut are shuffled together, with no internal shuffling of the
trees resulting from each elementary cut. An admissible cut of a tree results in a collection of
shuffles of forests P c(τ) and a tree Rc(τ). The collection of all left admissible cuts for a tree τ is
written as LAC(τ).

τ = P c(τ) Rc(τ)

I

�

We extend these cutting operations to forests ω ∈ OF by applying the B+ operator to ω and then
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cut it as a tree without using cuts of branches growing out of the root, before finally applying the
B− operator to Rc(ω) to remove the added root.

The coproduct ∆N of the Hopf algebra HN (Section 2.3) can be formulated in terms of these
cuts [28]. First one must extend the left admissible cuts to include the full cut of a tree, which
cuts “below” the root, so that P cel(τ) is again τ . The set of all left admissible cuts, including the
full cut, is denoted by FLAC, and the coproduct ∆N can be written as:

∆N (ω) =
∑

c∈FLAC
P c(ω)⊗Rc(ω). (29)

Table 1 gives the result of this coproduct applied to all forests up to order 4. If we let ∆̃N (ω)
consist only of forests resulting from not using the empty nor the full cut, we get ∆N (ω) =
1⊗ ω + ω ⊗ 1 + ∆̃N (ω). The operation ∆̃N is called the reduced coproduct.

A formula for the substitution law. We will give a formula for the dual of the substitution,
i.e. a formula for aT? , where 〈a ? b, ω〉 = 〈b, aT? (ω)〉. The formula is based on the pruning operation
P on forests.

Lemma 3.6 (Pruning). Let ω and ν be two forests. The dual of grafting, i.e. the operation defined
by 〈ν y ω′, ω〉 = 〈ω′,Pν(ω)〉, is given by:

Pν(ω) =
∑

c∈LAC(ω)

〈ν, P c(ω)〉Rc(ω).

The operation is called pruning.

Proof. An elementary cut at an edge growing out of a node n of a forest ω is the dual operation
of attaching trees via edges to the node n in a certain order, e.g.

= ( ) y ,

where the white nodes indicates where the attachment is done. The shuffling in P c(ω) corresponds
to the dual of attaching forests in all possible ways to different nodes. Hence the dual of grafting
is given by ∑

c∈LAC(ω)

P c(ω)⊗Rc(ω).

Theorem 3.7. We have

aT? (ω) =
∑

(ω)∈∆c

∑

c∈LAC(ω(2))

aT? (ω(1))B
+
(
aT? (P c(ω(2)))

)
a(Rc(ω(2))),

if ω 6= I, and aT? (I) = I. Here ∆c denotes deconcatenation (Section 2.3).

Note that using the magmatic product × defined in Section 2.3, this can also be written as:

aT? = µ ◦ (µ× ⊗ I) ◦ (aT? ⊗ aT? ⊗ a) ◦ (I ⊗∆′N ) ◦∆c, (30)

where µ is concatenation, ∆N is the coproduct in HN , and ∆′N (ω) = ∆N (ω)−ω⊗ I for all forests
ω.

Proof. We first prove the formula for ordered trees. Let πOT denote the projection of forests onto
trees: πOT(ω) =

∑
τ∈OT〈τ, ω〉ω. Recall that

〈a ? ω′, ω〉 = 〈ω′, aT? (ω)〉, 〈ν y ω′, ω〉 = 〈ω′,Pν(ω)〉.
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We have

πOT(aT? ω) =
∑

τ∈OT

〈
τ, aT? ω

〉
τ =

∑

ν∈OF

〈
ν y , aT? (ω)

〉
ν y

=
∑

ν∈OF

〈a ? (ν y ), ω〉 ν y

=
∑

ν∈OF

〈(a ? ν) y a, ω〉 ν y

=
∑

ν∈OF

〈a,Pa?νω〉 ν y

=
∑

c∈LAC(ω)

∑

ν∈OF

〈a ? ν, P c(ω)〉 〈a,Rc(ω)〉 ν y .

Hence,

πOT(aT? ω) =
∑

c∈LAC(ω)

∑

ν∈OF

〈
ν, aT? P

c(ω)
〉

(ν y )a(Rc(ω))

=
∑

c∈LAC(ω)

(
(aT? (P c(ω)) y

)
a(Rc(ω))

=
∑

c∈LAC(ω)

B+
(
aT? (P c(ω))

)
a(Rc(ω)).

The general formula is established by the following calculation, where τ is a tree:

aT? (ω) =
∑

ν,τ

〈
ντ, aT? (ω)

〉
ντ

=
∑

ν,τ

〈(a?ν)(a?τ), ω〉 ντ

=
∑

(ω)∈∆c

∑

ν,τ

〈
a?ν, ω(1)

〉 〈
a?τ, ω(2)

〉
ντ

=
∑

(ω)∈∆c

(aT? ω(1))(πOT(aT? ω(2))).

As an example, the formula applied to the tree yields

aT? ( ) = a( )B+(I) + a( )a( )B+( ) = a( ) + a( )a( ) + a( )3 .

See Table 2 where this formula is computed for all forests up to order 4, under the assumption
that a is an infinitesimal character.

Proposition 3.8. The map aT? is a character for the shuffle product:

at?(ω1 � ω2) = at?(ω1)� at?(ω2).

Proof. The shuffle product is dual to the deshuffle coproduct, so the result follows from Lemma
3.4 by dualization.

Remark 3.9. There is a similar formula for the substitution of B-series, only with the coproduct
∆N replaced by the Connes–Kreimer coproduct ∆CK =

∑
c∈AC(τ) P

c
CK(τ)⊗RcCK(τ):

aT? (τ) =
∑

c∈AC(τ)

B+
(
aT? (P cCK(τ))

)
a(RcCK(τ)) (31)

The proof of this formula is analogous to the proof of Theorem 3.7. This gives a recursive version
of the coproduct in the substitution bialgebra HCEFM of [5]
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3.3 Backward error analysis and modified vector fields

Recall the results on backward error analysis in [7]: Given a B-series method Bf (α) there is a

modified vector field f̃ so that the B-series method applied to f generates the exact flow of f̃ .
Moreover, f̃ can be written as a B-series with coefficients β satisfying β ? γExact = α, where
γExact is the coefficient function for the B-series of the exact flow, and ? is the substitution law
for characters in the Connes–Kreimer Hopf algebra HCK . To generalize to LB-series, consider a
numerical solution of the differential equation

y′ = f(y) · y (32)

written in terms of a LB-series Bf (α). We interpret it as the exact solution of a modified differential

equation y′ = f̃(y) · y. As in the classical case, it turns out that the modified vector field can be
written as a LB-series f̃ = Bf (β). Furthermore, f̃ is such that

BBf (β)(γExact) = Bf (α), (33)

where γExact represents the coefficients of the exact solution as described in Section 2.4. This
result follows by applying Proposition 3.2.

Theorem 3.10. Let Bf (α) be a LB-series method. There is a modified vector field f̃ , given by

f̃ = Bf (β) such that
Bf̃ (γExact) = Bf (β).

Moreover,
β ∗ γExact = α.

Example 3.11 (The exponential Euler method). The exponential Euler method is given by

yn+1 = exp(hf(yn))yn.

In Example 2.17 the coefficients of the LB-series for this method was seen to be γ = . To get the
backward error, we calculate β = Q( ) ◦ e, or log∗(Q( )) (cf. Section 2.4)

β = − 1

2
+

1

3
+

1

12
− 1

12
+

1

12
− 1

4
− 1

12
− 1

12
+

1

12
− 1

12
+

1

24
− 1

24

In the classical setting this logarithm has been studied as log∗(δ), for a certain character δ [6, 30].

4 Implementation

As pointed out in Section 2.3, the set of forests F can be generated recursively using a magmatic
product × defined on two forests ω1 and ω2 by

ω1 × ω2 = ω1B
+(ω2) (34)

by starting with the empty tree I. Each forest in F can uniquely be written as a word in I and ×.
Recall that if ω = ω1 × ω2, then we call ω1 the left part, ωL, and ω2 the right part, ωR, of ω. All
the basic algebraic operations used to construct the substitution law can be formulated in terms
of this product:

Concatenation: ω I = Iω = ω, and (ω1 × ω2)ω3 = ω1 × (ω2 ω3).

Shuffle: ω� I = I� ω = ω, and ω1 � ω2 = (ω1 � ω2L)× ω1R + (ω1L � ω2)× ω1R

Coproduct: ∆N (I) = I⊗ I, and ∆N (ω) = ω ⊗ I + ∆N (ωL)�×∆N (ωR)

The formula (30) for the substitution law in Theorem 3.7 therefore lends itself well to implemen-
tation.
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Representing the free magma: One way to represent the free magma is by using well-formed
words of parentheses ‘(’ and ‘)’. A word w is well-formed if it is made of parentheses coming
in pairs of one left and one right bracket, such that the left bracket appears on the left of the
corresponding right bracket in w. For example, (())() is a well-formed word. The set of forests
equipped with the product × is then isomorphic to this free magma via the recursion I = (),
ω1 × ω2 = (ω1)ω2.

The authors have implemented a variant of the free magma, with elements represented by
parentheses, and also the basic operations discussed in this paper. In future work, this implemen-
tation will be used to do backward error analysis on interesting test cases, like the dynamics of
rigid bodies.
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ω ∆N (ω)

I I⊗I
⊗I + I⊗

⊗I + ⊗ + I⊗
⊗I + ⊗ + I⊗

⊗I + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + I⊗

⊗I + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + I⊗
⊗I + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + 3 ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + 3 ⊗ + 2 ⊗ + ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + 2 ⊗ + ⊗ + ⊗ + I⊗

⊗I + ⊗ + ⊗ + ⊗ + I⊗
⊗I + ⊗ + ⊗ + ⊗ + I⊗

Table 1: Examples of the coproduct ∆N
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ω αT? (ω)

I I
α( )

α( ) + α( )2

α( )2

α( ) + 2α( )α( ) + α( )3

α( ) + α( )α( ) + α( )3

α( ) + α( )α( ) + α( )3

α( ) + α( )α( ) + α( )3

α( )3

α( ) + 2α( )α( ) + α( )2 + 3α( )2α( ) + α( )4

α( ) + α( )α( ) + α( )α( ) + α( )2α( )


 +


+ α( )4

α( ) + α( )α( ) + α( )α( ) + α( )α( ) + 3α( )2α( ) + α( )4

α( ) + α( )α( ) + α( )α( ) + α( )2 + α( )2α( )


 +


+ α( )4

α( ) + α( )α( ) + α( )2α( ) + α( )4

α( ) + α( )α( ) + α( )α( ) + 2α( )2α( ) + α( )4

α( ) + α( )α( ) + α( )α( ) + 2α( )2α( ) + α( )4

α( ) + α( )α( ) + α( )α( ) + α( )2α( ) + α( )4

α( ) + α( )α( ) + α( )α( ) + α( )2α( ) + α( )4

α( )2 + α( )2α( )
(

+
)

+ α( )4

α( ) + α( )α( ) + α( )2α( ) + α( )4

α( ) + α( )2α( ) + α( )4

α( ) + α( )α( ) + α( )2α( ) + α( )4

α( )4

Table 2: Examples of the substitution character αT? , where α is an infinitesimal character, for all
forests up to and including order four.
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On pre-Lie-type algebras with torsion

Alexander Lundervold * Hans Munthe-Kaas∗

Abstract

Pre-Lie algebras (also called Vinberg algebras) describe the algebra of flat and torsion free
connections on a differential manifold. In this paper we will explore algebras of connections
which have either non-vanishing torsion or curvature tensors. We will also show how the flat
algebras with constant torsion are related to other algebraic structures, some of which appears
in the study of numerical integration on homogeneous manifolds. Note that these algebras
have also been studied by B. Vallette in [20], under the name post-Lie algebras.

1 Introduction

1.1 Pre-Lie, Lie admissible and FCT-algebras

Let {A,�} be an algebra where � : A×A → A is a non-associative, non-commutative product.
Define the (negative) associator as

a�(x, y, z) := x� (y � z)− (x� y) � z. (1)

The algebra A is called pre-Lie (or Vinberg or left-symmetric) [21, 5] if the associator is symmetric
in the first two arguments

a�(x, y, z)− a�(y, x, z) = 0. (2)

This implies that the commutator x � y − y � x defines a Lie bracket. Pre-Lie algebras describe
algebraic properties of flat and torsion-free connections on manifolds [12]. More generally, an
algebra is called Lie-admissible if x � y − y � x defines a Lie bracket. It is known that this
condition holds if and only if

S(a�(x, y, z)− a�(y, x, z)) = 0, (3)

where S denotes the sum over the three cyclic permutations of x, y, z. [1, 6]. Lie admissible
algebras model algebraic properties of a torsion-free connection with constant curvature on a
manifold.

Motivated by applications related to flows on homogeneous and symmetric spaces, we propose
a different generalization of pre-Lie algebras:

Definition 1.1. [FCT-algebra] A flat algebra with constant torsion, {A, [·, ·],�} is a Lie algebra
{A, [·, ·]} equipped with a non-commutative, non-associative product � : A×A → A, called the
connection, such that the connection act as a derivation of the Lie bracket:

x� [y, z] = [x� y, z] + [y, x� z] (4)

and the following flatness condition holds:

[x, y] � z = a�(x, y, z)− a�(y, x, z). (5)

The Lie bracket [·, ·] is called the torsion.

∗Department of Mathematics, University of Bergen, Norway. Email: {alexander.lundervold,
hans.munthe-kaas}@math.uib.no
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Note that a pre-Lie algebra is FCT over an abelian Lie algebra, where [·, ·] = 0.
It turns out that FCT algebras have been studied before in a different setting, and under the

name post Lie algebras [20].

Remark 1.2. In many examples one obtains (5) with opposite sign

[x, y] � z = a�(y, x, z)− a�(x, y, z).

We could have defined left and right FCTs according to this sign. However, since the sign in (5)
can always be switched by changing the sign in the definition of the torsion, we will not make this
distinction.

A morphism F : A→ B of FCT-algebras is a Lie algebra homomorphism that preserves the �
operation:

F ([x, y]) = [F (x), F (y)]

F (x� y) = F (x) � F (y)
(6)

for all x, y ∈ A.

1.2 Algebraic structures of vector fields on manifolds

This section will motivate the definition of FCT-algebras through examples of algebras of vector
fields on manifolds. Let ∇ be an affine connection on a differential manifold M. The connection
defines a non-commutative and non-associative product x � y := ∇xy on the set of vector fields
such that

(fx) � y = f(x� y)

x� (fy) = df(x)y + fx� y

for a scalar field f . The torsion of the connection is a skew-symmetric tensor T : TM∧TM→ TM
defined in terms of two vector fields x, y as

T (x, y) = x� y − y � x− Jx, yK, (7)

where J·, ·K denotes the Jacobi–Lie bracket of vector fields. The curvature tensor R : TM∧TM→
End(TM) is defined as

R(x, y)z = x� (y � z)− y � (x� z)− Jx, yK� z = a�(x, y, z)− a�(y, x, z) + T (x, y) � z. (8)

The relationship between torsion and curvature is given by the Bianchi identities

S(T (T (x, y), z) + (∇xT )(y, z)) = S(R(x, y)z) (9)

S((∇xR)(y, z) +R(T (x, y), z)) = 0. (10)

Example 1.3 (Flat, torsion-free). T = 0 implies Jx, yK = x�y−y�x and R(x, y)z = a�(x, y, z)−
a�(y, x, z). If also R = 0, we obtain the pre-Lie condition (2).

Example 1.4 (Torsion-free, constant curvature). If T = 0 and ∇R = 0, the Bianchi identities
reduce to S(R(x, y)z) = 0, which is equivalent to the Lie-admissible condition (3) [6].

Example 1.5 (Flat, constant torsion). If R = 0 and ∇xT = 0, the Bianchi identities reduce to
the Jacobi identity S(T (T (x, y), z)) = 0. Thus the torsion defines a Lie bracket

[x, y] := −T (x, y).

In this case the connection is not Lie-admissible, but we have two distinct Lie algebras: one given
by the torsion bracket [x, y] and one by the Jacobi–Lie bracket Jx, yK, related by

Jx, yK = x� y − y � x+ [x, y].
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Lie groups and homogeneous spaces. A slightly different view on torsion and curvature
appear in the theory of G-structures and g-valued forms on a manifold. This is the foundation for
Cartan’s method of moving frames, which has recently been recognized as an important tool in
applied and computational mathematics [16, 11].

Let G be a Lie group with Lie algebra g, and let λ : G×M→M a transitive left action of G
on a homogeneous space M, with infinitesimal generator

λ? : g×M→ TM : (V, p) 7→ ∂

∂t

∣∣∣∣
t=0

λ(exp(tV ), p).

Let Ωk(M, g) be the space of g-valued k-forms on M, in particular Ω0(M, g) is identified with
the space of maps from M to g. Any x ∈ Ω0(M, g) generates a vector field X : M→ TM as

X(p) = λ?(x(p), p),

written in short form as X = λ?(x).
The space Ω0(M, g) has the structure of a FCT-algebra:

Proposition 1.6. LetM be acted upon from left by a Lie group G with Lie algebra {g, [·, ·]g}. Let
the Lie bracket [·, ·] : Ω0(M, g)×Ω0(M, g)→ Ω0(M, g) and the product � : Ω0(M, g)×Ω0(M, g)→
Ω0(M, g) be defined pointwise at p ∈M as

[x, y](p) = −[x(p), y(p)]g

x� y = λ∗(x)(y) (the Lie derivative of y along λ∗(x)).

Then {Ω0(M, g), [·, ·],�} is a FCT-algebra.

Proof. This can be verified by a coordinate computation. Let {ej} be a basis for g and ∂j = λ∗(ej)
the corresponding right invariant vector fields on M. Note that λ∗(−[ej , ek]) = J∂j , ∂kK, where
the right hand side is the Jacobi–Lie bracket of vector fields. Letting x(p) =

∑
j x

j(p)ej and

y(p) =
∑

k x
k(p)ek, where xj and yk are scalar functions on M, we obtain

[x, y] = −
∑

j,k

xjyk[ej , ek]

x� y =
∑

j,k

xj∂j(y
k)ek.

The FCT conditions follow by a straightforward computation. See [15, Lemma 3] for a slightly
different proof of a similar result.

Example 1.7 (Maurer–Cartan form). A one-form ω ∈ Ω1(M, g) is compatible with the group
action if λ?(ω(X)) = X for all vector fields X : M→ TM. IfM = G and λ(g, p) = g ·p is the left
action of G on itself, then the unique compatible ω ∈ Ω1(G, g) is the right Maurer–Cartan form
ω : TG→ g, defined as the map moving v ∈ TgG to g = TeG by right translation: ω(V ) = TRg−1V .

The Maurer–Cartan form defines a linear isomorphism ωp : TpG → g and hence defines an
isomorphism between Ω0(G, g) and vector fields on G. Furthermore it satisfies the structural
equation

dω +
1

2
ω ∧ ω = 0. (11)

On a general (connected, smooth) manifold M, the existence of a form with these two properties
implies thatM can be given the structure of a Lie group (up to a covering) [18, Theorem §8.8.7].
Thus the Maurer–Cartan form is fundamental in a differential geometric characterization of Lie
groups.

The curvature of ω ∈ Ω1(G, g) is given as R = dω + 1
2ω ∧ ω ∈ Ω2(G, g), and (11) is a

flatness condition equivalent to (5). Taking θ = ω as a solder form, we compute the torsion form
Θ = dθ + θ ∧ ω = 1

2ω ∧ ω ∈ Ω2(G, g). This yields

Θ(X,Y ) = [ω(X), ω(Y )]g.

Therefore, the Maurer–Cartan form has flat curvature and constant torsion.
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We conclude that the structure of flat and torsion free connections is naturally occurring in
the theory of homogeneous spaces, and in particular in the differential geometry of Lie groups.

2 The free FCT-algebra and universal enveloping algebras

2.1 Free FCT-algebras

In [4] Chapoton and Livernet gave an explicit description of the free pre-Lie algebra in terms of
decorated rooted trees and grafting. In this section we will see that there is a similar description of
the free FCT-algebra. In fact, we will show that the free FCT-algebra can be described as the free
Lie algebra over ordered rooted trees. Furthermore, we will relate FCT-algebras to D-algebras,
studied in connection with numerical Lie group integration ([15, 9]). The universal enveloping
algebra of an FCT-algebra is a D-algebra, and the FCT-algebra is recovered as the derivations in
the D-algebra.

Trees. Let C be a set, henceforth called colors. We define TC the set of all ordered (or planar)1

rooted trees with nodes colored by C. Formally we define this as the free magma

TC := Magma(C).
Recall that a magma is a set with a binary operation ? without any algebraic relations imposed.
The free magma over C consists of all possible ways to parenthesize binary operations on C. We
identify Magma(C) with planar trees, where the nodes are decorated with colors from C. On trees
we interpret ? as the Butcher-product [3]: τ1 ? τ2 = τ is a tree where the root of the tree τ1 is
attached on the left part of the root of the tree τ2. For example:

? = = ( ? ) ? (( ? ( ? )) ? ).

If C = { } has only one element, we write T := T{ }. The first few elements of T are:

T =



 , , , , , , , , . . .



 .

Note that any τ ∈ TC has a unique maximal right factorization

τ = τ1 ? (τ2 ? (· · · (τk ? c))), where c ∈ C and τ1, . . . , τk ∈ TC .

Here c is the root, k is the fertility of the root and τ1, . . . , τk are the branches of the root. Let k
be a field of characteristic zero and write k{TC} for the free k-vector space over the set TC , i.e. all
k-linear combinations of trees. We define left grafting2 � : TC×TC → k{TC} by the recursion

τ � c := τ ? c

τ � (τ1 ? (τ2 ? (· · · (τk ? c)))) := τ ? (τ1 ? (τ2 ? (· · · (τk ? c))))
+ (τ � τ1) ? (τ2 ? (· · · (τk ? c)))
+ τ1 ? ((τ � τ2) ? (· · · (τk ? c)))
+ · · ·
+ τ1 ? (τ2 ? (· · · ((τ � τk) ? c))).

(12)

Thus τ1 � τ2 is the sum of all the trees resulting from attaching the root of τ1 from the left to all
the nodes of the tree τ2. Example:

� = + + .
1Trees with different orderings of the branches are considered different, as when pictured in the plane.
2Various notations for similar grafting products are found in the literature, e.g. u � v = u[v] = u y v.
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Free Lie algebras of trees. Let g = Lie(TC) denote the free Lie algebra over the set TC [17].
For C = { }, a Lyndon basis is given up to order four as [13]:

Lie(TC) = k





, , , ,
[
,
]
, , , ,


 ,


 , , ,

[
,
]
,
[[

,
]
,
]
, . . .




.

Proposition 2.1. Let the free Lie algebra g = Lie(TC) be equipped with a product � : g× g→ g,
extended from the left grafting defined on TC in (12) as

u� [v, w] = [u� v, w] + [v, u� w] (13)

[u, v] � w = a�(u, v, w)− a�(v, u, w) (14)

for all u, v, w ∈ g. Then {Lie(TC), [·, ·],�} is an FCT-algebra.

Proof. Since any u, v, w ∈ g can be written as a sum of trees and commutators of trees, the
connection is well-defined on g. By construction it satisfies the axioms of a FCT-algebra.

Free FCT-algebras. Proposition 2.1 shows that the free Lie algebra of ordered trees has nat-
urally the structure of an FCT-algebra FCT(C) := {Lie(TC), [·, ·],�}. We call this the free FCT-
algebra over the set C for the following reason:

Theorem 2.2. For any FCT-algebra {A, [·, ·],�} and any function f : C → A, there exists a
unique morphism of FCT-algebras F : FCT(C)→ A such that F(c) = f(c) for all c ∈ C.

Proof. We construct F in two stages. First we show, using �, that f extends uniquely to a
function FTC : TC → A. Then by universality of the free Lie algebra, there is a unique Lie algebra
homomorphism F : Lie(TC)→ A. We show that this is also a homomorphism for the connection
product �.

To construct the extension to TC we first observe that the magmatic product τ ? τ ′ on TC
(the Butcher product of two trees) can be expressed in terms of left grafting �. This is done by
induction in the fertility of τ ′. For fertility 0, i.e. τ ′ = c ∈ C, we have τ ? c = τ � c. For fertility k
we write τ ′ = τ1 ? (τ2 ? (· · · (τk ? c))) and find from (12)

τ ? τ ′ = τ � τ ′ − (τ � τ1) ? (τ2 ? (· · · (τk ? c)))− · · · − (τ1 ? (τ2 ? (· · · (τ � τk ? c))).

In the right hand side of the equation, the fertility of any term on the right hand side of a ?-product
is smaller than k, which completes the induction. The fact that TC is freely generated from C by
the product ? ensures that FTC is uniquely defined by

FTC (c) = f(c) for all c ∈ C
FTC (τ � τ ′) = FTC (τ) � FTC (τ

′),

and hence that also F : Lie(TC)→ A is uniquely defined, as a Lie algebra homomorphism.
Finally, by induction on the length of iterated commutators, we see that F(u�v) = F(u)�F(v)

for all u, v ∈ Lie(TC): If u, v ∈ TC this holds by construction. Assuming that F(u � v) =
F(u)�F(v) whenever u and v are iterated commutators of length at most k, we find by using (13)–
(14) that F([u, τ1] � [v, τ2]) = F([u, τ1]) � F([v, τ2]) for all τ1, τ2 ∈ TC .

Proposition 2.3. Let FCT(C) be graded with the number n counting the number of nodes in the
trees. Then

dim(FCT(C)n) =
1

2n

∑

d|n
µ(
n

d
)

(
2d

d

)
n|C|,

where µ is the Möbius function. For |C| = 1 the dimensions are 1, 1, 3, 8, 25, 75, 245, . . .. See also
[19, A022553].

Proof. See [14] and [13].
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2.2 Universal enveloping algebras

In Section 3 we describe certain algebraic structures that occur naturally in the study of numerical
integration methods on manifolds [15]. Central in this work are algebras of derivations, called D-
algebras. We will see that FCT-algebras relate to D-algebras similarly to the relationship between
a Lie algebra and its universal enveloping algebra.

Definition 2.4 (D-algebra). Let B be a unital associative algebra with product u, v 7→ uv, unit
I and equipped with a non-associative product ·� · : B⊗B → B such that I� v = v for all v ∈ B.
Write Der(B) for the set of all u ∈ B such that u� · is a derivation:

Der(B) = {u ∈ B | u� (vw) = (u� v)w + v(u� w) for all v, w ∈ B}.

Then B is called a D-algebra if for any u ∈ Der(B) and any v, w ∈ B we have

v � u ∈ Der(B) (15)

(uv) � w = u� (v � w)− (u� v) � w. (16)

Proposition 2.5. If B is a D-algebra then the derivations Der(B) form a FCT-algebra, with
torsion [u, v] = uv − vu and connection �.

Proof. If u, g ∈ Der(B) we note that

(uv − vu) � · = u� (v � ·)− v � (u� ·) + (u� v) � · − (v � u) � ·.
The first two terms on the right is a commutator of two derivations and is therefore a derivation.
The last two terms are derivations separately. Hence, [u, v] ∈ Der(B) and {Der(B), [·, ·]} is a Lie
algebra. The other axioms of being FCT follows easily from the definition of a D-algebra.

Universal enveloping algebras. Let {A, [·, ·],�} be an FCT-algebra, and let U(A) be the
universal enveloping algebra of the Lie algebra {A, [·, ·]}. By the Poincaré–Birkhoff–Witt (PBW)
theorem we can embed A as a linear subspace of U(A), such that [u, v] = uv−vu. The embedding
is also denoted by A. The product � on A can be extended to U(A) according to:

I � v = v (17)

u� (vw) = (u� v)w + v(u� w) (18)

(uv) � w = u� (v � w)− (u� v) � w, (19)

for all u ∈ A and v, w ∈ U(A).

Proposition 2.6. Equations (17)–(19) define a unique extension of � from A to U(A). With the
non-associative product �, U(A) is a D-algebra with derivations Der(U(A)) = A.

Proof. See [7, Theorem V.1] for a proof that a derivation on a Lie algebra A extends uniquely
to a derivation on U(A). This justifies the extension on the right (18). The extension on the
left, given by (17) and (19), is compatible with the the embedding [u, v] 7→ uv − vu due to the
flatness condition (5) for FCTs. From the PBW basis on U(A) it follows that these equations
extend � uniquely to all of U(A) also on the left. It is clear that A ⊂ Der(U(A)). To check that
A = Der(U(A)) we verify from (17)–(19) that I is not a derivation and that u1, u2 ∈ Der(U(A))⇒
u1u2 /∈ Der(U(A)), thus Der(U(A)) cannot be larger than A.

Definition 2.7 (Universal enveloping algebra of FCT). We call U(A) equipped with this D-algebra
structure � the universal enveloping algebra of the FCT algebra A.

Proposition 2.8. For any D-algebra B and any FCT morphism f : A → Der(B) there exists a
unique D-algebra morphism F : U(A)→ B such that F(u) = f(u) for all u ∈ A.
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Proof. F is uniquely defined as a unital associative algebra morphism. It remains to verify that
F(u � v) = F(u) � F(v). U(A) has a grading by the length of the monomial basis of PBW.
Using (17)–(19) it follows by induction in the grading that F(u� v) = F(u) � F(v).

Remark 2.9. The preceding results establishes that we have a pair of adjoint functors between
the categories of D-algebras and FCT-algebras:

U(·) : FCT-alg : -� D-alg : Der(·).
In other words, there is a natural isomorphism

HomFCT(Der(A), B)→ HomD(A,U(B)).

Free D-algebras. A direct consequence of Theorem 2.2 and Proposition 2.8 is the following
characterization of a free D-algebra:

Corollary 2.10 ([15, Proposition 1]). The algebra DC := U(FCT(C)) is the free D-algebra over
the set C, i.e. for any D-algebra B and any function f : C → Der(B) there exists a unique D-algebra
morphism F : DC → B such that F(c) = f(c) for all c ∈ C.

The unital associative algebra of DC is U(Lie(TC)), which by the Cartier–Milner–Moore theo-
rem is the free associative algebra over TC . I.e. it is the noncommutative polynomials over rooted
trees: DC = k〈TC〉 = k{FC}, where k{FC} denotes the free vector space over the set of ordered
forests. FC := T∗C consist of all words of finite length over the alphabet TC , including the empty
word I. For C = { } these are

F =



I, , , , , , , , , · · ·



 .

We can create a tree from a forest ω by applying the operator B+
c : FC → TC , attaching the trees in

ω onto a common root labelled by c ∈ C and we can create a forest from a tree using the operator
B− : TC → FC removing the root. The concatenation product ω1, ω2 7→ ω1ω2 is the associative
operation of sticking shorter words together to create longer words.

Summarizing, the free D-algebra DC is the vector space of forests k{FC} with unit I, concate-
nation product and the left grafting product � defined on trees in (12) and extended to forests
by (17)–(19). This free D-algebra carries a Hopf algebra structure, closely related to the Connes–
Kreimer Hopf algebra, to be discussed in the sequel.

3 Related algebraic structures

There are a number of interesting algebraic structures associated with FCT and D-algebras.

3.1 Dipterous, pre-Lie and Lie admissible algebras

The composition product ◦ on D-algebras. A dipterous algebra [8] is a triple {B, ◦,�},
where B is a vector space and ◦ and � are two binary operations on B satisfying:

x◦(y◦z) = (x◦y)◦z (20)

x� (y � z) = (x◦y) � z (21)

for all x, y, z ∈ B. Let B be a D-algebra with concatenation x, y 7→ xy and connection product
x� y. Define a product ◦ : B ×B → B as

I◦y = y

x◦y := xy + x� y

(xy)◦z := x◦(y◦z)− (x� y)◦z for all x ∈ Der(B), y, z ∈ B.

(22)
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Proposition 3.1. If B is a D-algebra then {B, ◦,�} is a dipterous algebra.

Proof. Proof by induction in the grading on B provided by the PBW basis.

The product x, y 7→ x◦y will be referred to as the composition product, while x, y 7→ xy is called
frozen composition, due to the interpretation for differential operators on manifolds. Let A =
Ω0(M, g) be the FCT defined in Proposition 1.6, and let B = U(A) = Ω0(M, U(g)). For f, g ∈ B
the frozen composition is (fg)(p) = f(p)g(p), where we ‘freeze’ the value of f and g in a point
p ∈ M and obtain the product from U(g). The composition f, g 7→ f◦g, on the other hand,
corresponds to the fundamental operation of composing two differential operators on M. For
f, g ∈ Der(B) we have f◦g = fg+ f � g, splitting the composition in a term fg where g is ‘frozen’
(constant) and a term f � g where the variation of g along f is taken into account.

On the free D-algebra DC the composition is computed on two forests ω1, ω2 ∈ FC as ([15]
Definition 2):

ω1◦ω2 = B−(ω1 �B+(ω2)). (23)

We call this the planar Grossman–Larson product, since it is a planar forest analogue of the
Grossman–Larson product of unordered trees appearing in the Connes–Kreimer Hopf algebra.

Jacobi–Lie bracket on FCT.

Proposition 3.2. If {A, [·, ·],�} is FCT, then the bracket Jx, yK defined as

Jx, yK := x� y − y � x+ [x, y]

is a Lie bracket, called the Jacobi–Lie bracket.

Proof. Identifying A with Der(U(A)), we get

Jx, yK = x◦y − y◦x.

Since ◦ is associative, this is a Lie bracket.

In the motivating examples of affine connections onM and homogeneous spaces in Proposition 1.6,
the Lie bracket J·, ·K corresponds to the Jacobi–Lie bracket of vector fields on M.

Modified connections. By a modification of the product � in A, we obtain another FCT. The
two structures can be interpreted as left and right adjoint isomorphic FCTs.

Proposition 3.3. Let {A, [·, ·],�} be FCT. Define the product � as

x� y = x� y + [x, y].

Then {A,−[·, ·],�} is FCT.

Proof. Since both x � · and [x, ·] are derivations on the torsion bracket, also x � · + α[x, ·] is a
derivation, for any α. A direct computation shows that (5) holds with opposite sign. We change
sign of the torsion and obtain another FCT.

Proposition 3.4. Let {A, [·, ·],�} be FCT. Define the product � as

x � y = x� y +
1

2
[x, y].

Then {A,�} is Lie admissible, torsion free with constant curvature

R(x, y)z = −1

4
[[x, y], z].
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Proof. Lie admissible follows from x � y − y � x = Jx, yK. The curvature is

R(x, y)z = x � (y � z)− x↔ y − Jx, yK � z

= x� (y � z +
1

2
[y, z]) +

1

2
[x, y � z +

1

2
[y, z]]− x↔ y − Jx, yK� z − 1

2
[Jx, yK, z]

=
1

2
[x� y, z] +

1

2
[y, x� z] +

1

2
[x, y � z] +

1

4
[x, [y, z]]− x↔ y − 1

2
[Jx, yK, z]

=
1

4
[x, [y, z]]− x↔ y − 1

2
[[x, y], z] =

1

4
[[x, y], z]− 1

2
[[x, y], z]

= −1

4
[[x, y], z],

where x↔ y means swap x and y in everything to the left.

3.2 Hopf algebras

Hopf algebraic structures related to the free D-algebra DC has been studied in [15, 9, 10]. These
Hopf algebras can both be seen as generalizations of the shuffle–concatenation Hopf algebras of
free Lie algebras as well as of the Connes–Kreimer Hopf algebra, which is closely related to pre-Lie
algebras [4].

Shuffle product. From the classical theory of free Lie algebras, it follows that the deriva-
tions Der(DC) can be characterized in terms of shuffle products. Define the shuffle product
� : DC ⊗DC → DC on the free D-algebra DC by I�ω = ω = ω�I and

(τ1ω1)�(τ2ω2) = τ1(ω1�τ2ω2) + τ2(τ1ω1�ω2)

for τ1, τ2 ∈ T, ω1, ω2 ∈ F. Let (·, ·) be an inner product on DC defined such that the forests form
an orthonormal basis, and let the coproduct ∆� : DC → DC ⊗DC be the adjoint of �.

Proposition 3.5. The free D-algebra DC has the structure of a cocommutative Hopf algebra
H′N = {k{FC}, ε, ◦, η,∆�, S} with product being the planar Grossman–Larson product ◦ defined
in (23), the coproduct ∆� is the adjoint of the shuffle and the unit η and counit ε are given as

η(1) = I
ε(I) = 1, ε(ω) = 0 for all ω ∈ FC \{I}.

The primitive elements are Prim(H′N ) = Der(DC). The antipode S is defined in [15].

Proof. The Hopf algebraic structure (for the dual of H′N ) is proven in [15]. Characterization of
the primitive elements follows from the free Lie algebra structure [17].

The Hopf algebra HN and Lie–Butcher theory. In the study of numerical integration on
manifolds it is important to characterize flows and parallel transport on manifolds with con-
nections algebraically. It is convenient to base this on the dual Hopf algebra of H′N . Let
HN = {k{FC}, ε,�, η,∆◦, S} be the commutative Hopf algebra of planar forests, where the prod-
uct is the shuffle product � and the coproduct ∆◦ the adjoint of the planar Grossman–Larson
product. Various expressions for ∆◦ and the antipode S are derived in [15]. Our definition of FC
and HN is rather involved, going via trees and enveloping algebras extending � from derivations,
introducing the dipterous composition ◦ and dualizing to obtain ∆◦. However, both FC and the
Hopf algebra HN can alternatively be defined in a compact, recursive manner. We will review this
definition, which will be the foundation for the computer implementation of HN currently under
construction.

Definition 3.6 (Magmatic definition of FC). Given a set C we let {×c}c∈C be a collection of
magmatic products, without any defining relations. Let I denote the unity and we define FC as
the free magma generated from I by the magmatic products.
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This definition is related to our previous definition of FC by interpreting ω1 ×c ω2 in terms of
forests as

ω1 ×c ω2 = ω1B
+
c (ω2) (24)

for all ω1, ω2 ∈ FC , c ∈ C. Thus, e.g. for c = we have I×c I = , and

×c = .

Any ω ∈ FC \{I} can be written uniquely as ω = ωL×cωR, where c ∈ C is the root of the rightmost
tree in the forest. We call ωL and ωR the left and right parts of ω and c the right root.

Definition 3.7 (Shuffle product.). The shuffle product � : k{FC}⊗ k{FC} → k{FC} is defined by
k-linearity and the recursion

I�ω = ω�I = ω, for all ω ∈ FC ,

v�ω = (vL�ω)×c vR + (v�ωL)×d ωR, for v = vL ×c vR, ω = ωL ×d ωR.
(25)

Definition 3.8 (Coproduct.). The coproduct ∆◦ : k{FC} → k{FC}⊗ k{FC} is defined by k-
linearity and the recursion

∆◦(I) = I⊗I
∆◦(ω) = ω⊗I + ∆◦(ωL)�×d∆◦(ωR), for ω = ωL ×d ωR,

(26)

where �×d is the shuffle product on the left and the magmatic product ×d on the right:

(u1⊗u2)�×d(v1⊗v2) := (u1�v1)⊗(u2 ×d v2).

Proposition 3.9 ([15]). HN = {k{FC}, ε,�, η,∆◦, S} is a commutative Hopf algebra.

The Hopf algebra HN is the setting for Lie–Butcher series.

Definition 3.10 (Lie–Butcher series). Let H∗N = Homk(HN , k) denote the linear dual space of
HN . An element α ∈ H∗N is called a Lie–Butcher series. We identify α with an infinite series

α =
∑

ω∈FC
α(ω)ω,

via a dual pairing (·, ·) : H∗N ×HN → k defined such that

α(ω) = (α, ω) for all ω ∈ FC .

The Lie–Butcher series (LB-series) form the basis for Lie–Butcher theory, which studies how
numerical methods can be represented as LB-series, and how basic operations like composition and
substitution of LB-series behaves. Lie–Butcher theory has been studied by several authors, see
[2, 9], and references therein. A future project (and one of the main motivations for introducing
FCT-algebras) is to reformulate Lie–Butcher theory in the language of FCT algebras. That way,
LB-series will be connected closer to their roots as Lie series. We hope that this can lead to new
results and insights into their structure and properties.
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