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Introduction

Let k be a commuative ring. Given a k-algebra A and an A-bimodule M , one can define the
Hochschild complex HH(A,M) : ∆o → k-mod as a certain simplicial k-module, given on an
object [q] of ∆o as HH(A,M)q = M ⊗A⊗q. The homology of this simplicial module is called
the Hochschild homology of A with coefficients in M and is denoted by π∗HH(A,M). In the
case M = A we get a cyclic module HH(A) := HH(A,A) : Λo → k-mod, where Λ is Connes’s
cyclic category (see e.g. [Lod97] or Section 3.1 below). The cyclic homology of this cyclic
module is called the cyclic homology of A and is written as HC∗(A) (Section 3.1). In fact, the
groups HC∗(A) are the homotopy of the homotopy orbits of the realization |HH(A)| under
the action of S1 (Section 3.2). The homotopy fixed points give rise to the negative cyclic
homology of A, denoted by HC−∗ (A). There also exists a family of related groups, called
periodic Hochschild homology HP∗(A), and these measure the ”difference” between HC∗ and
HC−∗ , in the sense that there is a long excact sequence (see e.g. [Lod97, Section 5.1])

· · · → HCn−1 → HC−n → HPn → HCn−2 → · · · .

A motivation for studying these homology theories comes from the following relations to
K-theory. There are maps D : K∗ → HH∗ and ch : K∗ → HC−∗ , called the Dennis trace map
and the Chern character, respectively ([Goo86], [Jon87]). There is also a map π : HC−∗ → H∗,
and the Dennis trace map factors through the other two maps ([Goo86]):

HC−∗

K∗
D
-

ch
-

HH∗.

π

-

This can be an aid in calculations of K-theory, since Hochschild and cyclic homology are easier
to compute. As an example illustrating this, we quote the following theorem by Goodwillie.

Theorem ([Goo86]). Let A
f→ B be a map of simplicial algebras, where A and B are rational,

such that the kernel I in
0→ I → π0A

π0f−→ π0B → 0

is nilpotent. Then there is a diagram

K(A)
ch- HC−(A) � ΣHC(A)

K(B)
?

ch- HC−(B)
?

� ΣHC(B),
?

where the two squares are homotopy cartesian (in the sense of [GJ99, Section II.8]).
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2 Introduction

Thus, if we can calculate HC−(A), HC−(B), HC(A), and HC(B), we might be able to
calculate the K-groups.

Let Γ and F be the category of finite pointed sets and finite sets, respectively. Loday has
observed that when A is commutative, then the Hochschild complex factors through these
categories:

∆o - Λo

Γ

S1

?
- F

S1

?

k-mod,
�

H
H
(A

,M
)H

H
(A

,M
)

-

� L(
A
,M

)L(A
,M

) -

where the vertical maps are given by the simplicial circle S1, and the horizontal maps by
inclusions. The map L(A,M) is the Loday functor. Hence, we can consider Hochschild
homology of A with coefficients in M as the homology associated to the composition

∆o S1

−→ Γ
L(A,M)−→ k-mod .

This construction can be considered for any simplicial finite set X and any functor F : Γ →
k-mod. The homology associated to the composition

∆o L−→ Γ
F−→ k-mod

has been studied by Pirashvili in [Pir00b]. Pirashvili focused on the case L = Sn and called
the associated homology n-th order Hochschild homology of F .

In this thesis we will focus on the case L = Tn, where Tn is the simplicial n-torus, and in
the case F = L(A), this gives us the n-th iterated Hochschild homology of A.

We will define the n-th order cyclic homology of a functor F : F → k-mod as the cyclic
homology associated to the n-cyclic module

Λo × · · · × Λo
Tn

−→ F F−→ k-mod,

and the n-th order cyclic homology of a commutative algebra A as the homology we get in the
case F = L(A). This will correspond to the homotopy orbits of |HH [n](A)| under the action
of the torus Tn (Section 3.2), where HH [n](A) is the homology associated to L(A) ◦ Tn.

There are topological versions of Hochschild and cylic homology, called topological Hochschild
homology (THH) and topological cyclic homology (TC). Topological Hochschild homology can
be defined by replacing the tensor product by the smash product of spectra in the definition
of the Hochschild complex, resulting in a simplicial complex THH in the category of symmet-
ric spectra (see [Bök86] or [BHM93]). More precisely, if k is a commutative symmetric ring
spectrum, R a k-algebra, and M a k-symmetric R-bimodule, the q-simplices of THH(R;M)
are defined as

THH(R;M)q = M ∧k R∧kq.
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Topological cyclic homology (TC) was defined by Bökstedt, Hsiang, and Madsen in
[BHM93] in such a way as to model the S1-fixed points of THH.

THH and TC are related to K-theory, as well as to the algebraic versions of Hochschild
and cyclic homology. In fact, Dundas, Goodwillie, and McCarthy ([DGM]) have shown that
there is a diagram

K - TC - THHhS1 - THH

HC−
?

-
-

HH.
?

These relations can be used to study iterated K-theory. For instance, by using the map
K → THH from the diagram above, we get a map

K(K(A)) −→ THH(THH(A)).

In [CD], Carlsson and Dundas study iterated K-theory by considering iterated topological
Hochschild homology THH and its associated topological cyclic homology, hopefully captur-
ing the chromatic behaviour of K-theory predicted by Rognes’s Red-shift conjecture.

The above map can be continued into iterated Hochschild homology

K(K(A)) −→ THH(THH(A)) −→ HH(HH(A)),

and one of the motivations for this thesis is to shed some light on iterated K-theory by
considering iterated Hochschild homology.

Throughout the thesis, k will denote a commutative rational field, and all k-algebras consid-
ered will be unital and commutative.



4 Introduction

The thesis is organized as follows:

Chapter 1: Hochschild Homology. Section 1.1 contains some preliminaries from sim-
plicial homotopy theory. In Section 1.2, we will define higher order Hochschild homology of
functors and algebras and study some simple properties of these constructions. In Section 1.3,
we will do some calculations of higher order Hochschild homology in the cases of the poly-
nomial algebra and the truncated polynomial algebra. To obtain these calculations, we will
discuss Hochschild homology of differential graded algebras and prove some general results.

Chapter 2: Operations and Decompositions of Hochschild Homology. In Section
2.1, we give a presentation of some results by Pirashvili that will be used to get a decom-
position of higher order Hochschild homology. Section 2.2 is devoted to a study of certain
important operators on Hochschild homology, namely the so-called Adams operations. We
will use methods developed by McCarthy ([McC93]) and Bauer ([Bau]) to show how these
operators relate to the decomposition obtained in Section 2.1.

Chapter 3: Cyclic Homology. In Section 3.1, we define higher order cyclic homology.
Section 3.2 is devoted to showing that higher order cyclic homology corresponds to orbits of
Hochschild homology.

Chapter 4: Decomposition of Cyclic Homology. Pirashvili has constructed a decom-
position of cyclic homology, and in this chapter we generalize this decomposition to higher
order cyclic homology.



Chapter 1

Hochschild Homology

We will consider the homology of the simplicial module we get from compositions

∆o L−→ Γ
F−→ k-mod

in certain special cases. Here Γ is the category of finite pointed sets.

For example,

if L = S1, we get the Hochschild homology of the functor F (Definition 1.2.2);

if L = S1 and F is the Loday functor L(A) (A is commutative), we get the classical
Hochschild homology of the algebra A;

if L = Tn and F = L(A), we get the n-th iterated Hochschild homology of A (1.2.7).

In Section 1.3, we will calculate the second iterated Hochschild homology of the polynomial
ring and of the dual numbers.

1.1 Preliminaries

The main reference for this section is [GJ99].

We begin by defining the simplicial category ∆.

Definition 1.1.1. The category ∆ has as objects the ordinal sets [n] = {0, 1, ..., n}, n ≥ 0, and
the morphisms are the monotonic order-preserving maps. It is generated by the morphisms

δi : [n− 1] → [n], 0 ≤ i ≤ n,
σj : [n+ 1] → [n], 0 ≤ j ≤ n+ 1,

defined by

δi({0, 1, ..., n}) = {0, 1, ..., i− 1, i+ 1, ..., n},
σi({0, 1, ..., n}) = {0, 1, ..., i, i, i+ 1, ..., n}

5



6 Hochschild Homology

subject to the cosimplicial relations

δjδi = δiδj−1 if i < j,

σjσi = σiσj−1 if i ≤ j,

σjδi =


δiσj−1 if i < j

id if i = j or i = j + 1

δi−1σj if i > j + 1.

Let C be a category. Functors X : ∆op → C are called simplicial C-objects. Here ∆o

denotes the opposite category of ∆. The generating maps of ∆o are written as δi and σj . The
simplicial C-objects form a category sC, where the morphisms are the natural transformations.
If X ∈ sC is a simplicial C-object, we write Xn for the image of [n] under X and call it the
n-simplices of X.

The most important example of these constructions is the category of simplicial objects
in the category of sets, denoted by S and called the category of simplicial sets. The basic
objects in S are the standard simplicial sets.

Example 1.1.2. The standard simplicial set ∆n is defined by

∆n([k]) = hom∆([k], [n]).

Its non-degenerate k-simplices (that is, the k-simplices that are not in the image of any σj ’s)
are given by the injective order-preserving maps [k]→ [n].

The boundary of ∆n, denoted by ∂∆n, is the simplicial set whose non-degenerate k-simplices
correspond to the nonidentity injective order-preserving maps [k] → [n]. The simplicial n-
sphere is the simplicial set defined by Sn = ∆(n)/∂∆(n).

1.1.1 Simplicial Objects in Abelian Categories

Let A be an abelian category, and let A ∈ sA. The Moore complex of A has the n-simplices
of A as n-chains and boundary defined by

b =

n∑
i=0

(−1)idi.

Here di is the map induced from the map δi in ∆o. We mostly write C∗A for the Moore
complex of A and denote its homology by π∗A. Sometimes, the Moore complex will be
denoted simply by A. The notation π∗A makes sense, since the homology of C∗A agrees with
the simplicial homotopy of the underlying simplicial set (see e.g. [GJ99, Section III.2]).

Another way we can associate a chain complex to a simplicial simplicial object A in A, is
through the normalized complex N∗A. The n-chains of this complex are defined as

NAn =

n−1⋂
i=0

ker(di) ⊂ A,

and the boundaries are given by

NAn
(−1)ndn−→ NAn−1.

This is a subcomplex of the Moore complex.
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Theorem 1.1.3 ([GJ99, Theorem III.2.5] (Dold-Kan correspondence)). The normalized
chain complex N∗ gives an equivalence of categories

sA → Ch+(A),

where Ch+(A) is the category of chain complexes in A.

The normalized complex and the Moore complex are connected through the degenerate
subcomplex D∗A of A, in the sense that A = N∗A ⊕D∗A, and it can be shown that D∗A is
acyclic. The n-chains of D∗A are given by DAn =

∑n−1
0 si(An−1).

Theorem 1.1.4 ([GJ99, Theorem III.2.5]). Let A ∈ sA. The composition of chain maps

N∗A
i→ A

p→ A/D∗A,

where i is the inclusion and p is the canonical projection, is an isomorphism of chain com-
plexes. Moreover, the inclusion N∗A→ A is a natural chain homotopy equivalence.

1.2 Higher Order Hochschild Homology

Hochschild homology of an associative algebra with coefficients in an A-bimodule M is the
homology of the complex

M
b←M ⊗A b←M ⊗A⊗A b← · · · ,

where b is the operator

b(a0, ..., an) =
n∑
i=0

(a0, ..., aiai+1, ..., an) + (−1)n(ana0, ..., an−1).

Here a0 ∈M and ai ∈ A for i ≥ 1. This chain complex is called the Hochschild complex and
is denoted by HH(A,M). It is the Moore complex of the simplicial module, also denoted by
HH(A,M), whose n-simplicies are HH(A,M)n = M ⊗A⊗n.

The following category is of special interest:

Definition 1.2.1. The category Γ has as objects all finite pointed sets and as morphisms
all basepoint-preserving set maps. A skeleton for this category is given by the objects n+ =
{0, 1, ..., n}, where 0 is the basepoint.

(NB: Some authors write Γo for what we have called Γ.) We observe that the simplicial
circle is an object of sΓ. Indeed S1([n]) = n+.

Loday has observed that if A is commutative, then the Hochschild complex factors through
the category Γ:

∆o

Γ

S1

?

L(A,M)
- k-mod .

H
H
(A

,M
)-

Here S1 is the simplicial circle, and L(A,M) is the so-called Loday functor, which is defined
below.
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Let F : Γ→ k-mod be any functor. Then we get a simplicial k-module by composing with
the simplicial circle:

∆o S1

−→ Γ
F−→ k-mod,

and, following [Pir00b], we have the following definition:

Definition 1.2.2. Let F be a functor Γ → k-mod. The Hochschild homology of the functor
F is defined as the homology of the Moore complex, written as HH(F ), associated to the
composition F ◦ S1 = F (S1).

This construction works for any simplicial finite set L : ∆o → Γ, and the complex given
by the composition

∆o L
- Γ

F
- k-mod

has been studied in [Pir00b]. Pirashvili focused on the case L = Sn and defined n-th order
homology of the functor F as the homology we get in this case. We will focus on the case
where F is the Loday functor (defined below) and X is the n-torus, and this will give us
the n-th iterated Hochschild homology of A. We will write HH [n](F ) for the Moore complex
associated to the composition

∆o Tn
- Γ

F
- k-mod .

Remark 1.2.3. We consider the n-torus as a simplicial object in the category Γ by using the
diagonal map ∆o → ∆o × · · · ×∆o. By the Eilenberg–Zilber theorem, this is the same up to
homology, as considering it as an n-simplicial set and then using the total complex (see e.g.
[GJ99, Chapter 4]).

The Loday Functor. A functor of special interest is the so-called Loday functor L(A,M) :
Γ → k-mod, which is defined as follows (see [Pir00b, Section 1.7]): It takes {0, 1, ..., n} to
M ⊗ A⊗n and takes a morphism f : {0, 1, ...,m} → {0, 1, ..., n} to the morphism f∗ given by
f∗(a0 ⊗ · · · ⊗ an) = (b0 ⊗ · · · ⊗ bm), where

bj =
∏
f(i)=j

ai, j = 0, ..., n,

and bj = 1 if f−1(j) = ∅. Here a0 is in M . We write L(A) for L(A,A). The definition of
L(A,M) can be extended to commutative differential graded algebras A, which are defined as
follows:

Definition 1.2.4. A commutative differential graded algebra (CDGA) is a pair (A, δ), where
A is a graded commutative algebra; that is, ab = (−1)|a||b|ba, and δ is a degree −1-differential
δ : A→ A satisfying (i) δ2 = 0, and (ii) δ(ab) = δ(a)b+ (−1)|a|aδ(b).

Now let A be a CDGA and let M be a graded differential A-module. Then the Loday
functor L(A,M) is given on objects as above, while a morphism f : m+ → n+ is sent to the
morphism f∗ given by

f∗(a0, ..., an) = (−1)ε(f,a)(b0, b1, ..., bm),



1.2 Higher Order Hochschild Homology 9

where the bj ’s are as above, and

ε(f, a) =

n−1∑
j=1

|aj |

 ∑
{k | k>j, 0≤f(k)≤f(j)}

|ak|

 (1.1)

(see [Pir00b, Section 1.7]). The i–th dimensional part of L(A,M) will be written as Li(A,M).

Dually, there is a contravariant functor J (C,N) : Γ→ k-mod, where C is a cocommutative
k-coalgebra and N a C-comodule, given on objects by

n+ 7→ N ⊗ C⊗n.

There is also an extension to differential graded coalgebras analogous to the one for L(A,M).
We write J (C) for J (C,C), and Ji(C,N) for the i-th dimensional part of J (C,N).

The complex obtained from the composition L(A,M) ◦ L, where L is a simplicial set, will
be denoted by HHL(A,M). The complex HL(A,A) will mostly be written as A⊗L. We make
the following definition:

Definition 1.2.5. Let A be a commutative k-algebra and M an A-bimodule. The n-th order
Hochschild homology of A with coefficients in M is the homology of the complex HHTn(A,M).

Remark 1.2.6. Ordinary Hochschild homology of an algebra A with coefficients in the bi-
module M corresponds to the homology of the complex A⊗S

1
. We will sometimes write

HH∗(A) for this homology.

Lemma 1.2.7. Let X and Y be sets. The construction A⊗X is functorial in X, and

A⊗(X×Y ) ∼= (A⊗X)⊗Y .

In particular, higher order Hochschild homology is iterated Hochschild homology.

Proof. We have
A⊗X = ⊗x∈XA,

and
A⊗X×Y =

⊗
(x,y)∈X×Y

A = ⊗y∈Y ⊗x∈X A = (A⊗X)⊗Y .

As an example, we look at the homology of HHX(k[G], k).

Example 1.2.8. Let G be an abelian group, and let k[G] be its group algebra. We have

L(k[G], k)(n+) = k ⊗ k[G]⊗n ∼= k[G×n]

and k[G×n] ∼= k[G⊗ Z̃[n]], where Z̃[n] = Z[n]/Z[0] is the free pointed abelian group on n. This
construction is functorial in n+, so for an arbitrary simplicial X ∈ Γ, we get

HHX(k[G], k) ∼= k[G⊗ Z̃(X)].

By definition of reduced homology of X, we have

π∗HHX(k[G], k) ∼= k[H̃∗(X;G)].
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Let X = Sn. We get
π∗HHSn(k[G], k) ∼= k[H̃∗(S

n, G)].

The space Z̃[Sn] is the n-th Eilenberg–Mac Lane space K[Z, n], so G⊗ Z̃[Sn] = K[G,n].

Let X = Tn. We have G⊗ Z̃[T 2] = K[G×G, 1]×K[G, 2], so

π∗HHT 2(k[G], k) ∼= k[H̃∗(T
2;G)] ∼= k[H̃∗(S

1, G×G)]⊗ k[H̃∗(S
2, G)].

Lemma 1.2.9. Let A and B be two k-algebras and let X be a simplicial finite set. Then
there is an isomorphism

π∗HHX(A⊗B) ∼= π∗HHX(A)⊗ π∗HHX(B).

Proof. This is immediate from the Künneth theorem for homology.

The Hochschild complex has an algebra structure given by the shuffle product.

The algebra structure of HH(A). There is a product in the Hochschild complex, called
the shuffle product −×− :: HH(A)m ⊗HH(A)n → HH(A)m+n, and it is given by

(a, a1, ..., ap)× (a′, ap+1, ..., ap+q) =
∑
σ

sgn(σ)(aa′, aσ−1(1), ..., aσ−1(p+q)),

where the sum is extended over all (p, q)-shuffles σ ([Lod97, Section 4.2]). A (p, q)-shuffle is
a permutation σ in Σp+q such that

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q).

Lemma 1.2.10 ([Lod97, Lemma 4.2.2]). The Hochschild boundary b is a graded derivation
for the shuffle product, so the Hochschild complex HH(A) is a differential graded algebra.

1.3 Examples

We calculate the second iterated Hochschild homology of the polynomial ring k[t] and of the
truncated polynomial ring k[ε]/ε2. To do this, we develop some general theory for Hochschild
homology of commutative differential graded algebras (defined in 1.2.4). The main references
for this section are [BV88], [Cn99], and [Lod97, Section 5.4].

1.3.1 Hochschild Homology of DGAs

According to [Lod97, Section 5.4], Hochschild homology of a differential graded algebra (A, δ)
is the homology of the bicomplex

(A⊗3)0

?
�
δ

(A⊗3)1

?
�
δ

(A⊗3)2

?
�
δ

(A⊗2)0

b
?
�
−δ

(A⊗2)1

b
?
�
−δ

(A⊗2)2

b
?
�
−δ

A0

b
?
�

δ
A1

b
?
�

δ
A2

b
?
�

δ
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where
(A⊗n+1)p =

⊕
i0+···+in=p

Ai0 ⊗ · · · ⊗Ain

denote the degree p part and

δ(a0, ..., an) = (δa0, a1, ..., an) +

n∑
i=1

(−1)εi(a0, ..., ai−1, δai, ai+1, ..., an).

Here εi =
∑i−1

j=0 |aj |. The Hochschild boundary b is given by

b(a0, ..., an) =
n−1∑
i=0

(−1)i(a0, ..., aiai+1, ..., an) + (−1)e(ana0, ..., an−1),

where e = |an|
∑n−1

j=0 |aj |. The homology of this complex will be denoted HH∗(A, δ).

Remark 1.3.1. When we talk about the homology of a bicomplex (or a higher complex), we
mean the homology of its total complex.

Definition 1.3.2. The shuffle product in HH∗(A, δ),

× : HHp(A, δ)⊗HHq(A, δ)→ HHp+q(A, δ),

is given by

(a, a1, ..., ap)× (a′, ap+1, ..., ap+q) = (−1)e
∑
σ

(−1)f(σ)(aa′, aσ−1(1), ..., aσ−1(p+q)),

where the sum is taken over all (p, q)-shuffles σ,

f(σ) =
∑

{i<p+j |σ(i)>σ(p+j)}

|ai||aj |,

and e = |a′|
∑p

i=1 |ai|.

Remark 1.3.3. We see that the sign (−1)f(σ) comes from all the pairs (ai, aj) such that
aj has been shuffled past ai, while the sign (−1)e comes from moving a′ past the elements
a1, ..., ap. See [ML63, Section X.12].

Hochschild homology of CDGAs.

Lemma 1.3.4 ([BV88, Proposition 1.1]). For any commutative DGA (CDGA) (A, δ) there
exists a free algebra ΛV and a surjective quasi-isomorphism

(ΛV, δ)
∼
� (A, δ).

Such a free CDGA is called a free model of A. If (ΛV, δ) is a free model for (A, δ), then
HH∗(A, δ) ∼= HH∗(ΛV, δ) by [Lod97, Theorem 5.3.5].

The algebra ΛV is the graded symmetric algebra of V , with

ΛV = S

⊕
n≥0

V2n

⊗ E
⊕
n≥0

V2n+1

 ,

where S and E are the symmetric and exterior algebra functors, respectively.
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In [Lod97, Section 5.4], Loday shows that Hochschild homology of a free CDGA (ΛV, δ) is
isomorphic to the homology of the total complex Ω∗(ΛV,δ) of the double complex given by

(Ω2
A|k)0

?
�
δ

(Ω2
A|k)1

?
�
δ

(Ω2
A|k)2

?
�
δ

(Ω1
A|k)0

0
?

�
−δ

(Ω1
A|k)1

0
?

�
−δ

(Ω1
A|k)2

0
?

�
−δ

A0

0
?
�

δ
A1

0
?
�

δ
A2

0
?
�

δ
,

where A := ΛV . Here Ωn
A|k is the graded exterior differential module of A, defined by

Ωn
A|k = ∧̄nAΩ1

A|k,

where Ω1
A|k is the graded module of Kähler differentials. The symbol ∧̄A is the graded exterior

product defined on a graded A-module M as M ∧̄AM = M ⊗AM/ ∼, where the equivalence
relation ∼ is generated by

m⊗ n ∼ −(−1)|m||n|n⊗m (1.2)

(see [Lod97, Section 5.4.3]). The graded module of Kähler differentials is generated by the
elements da for a ∈ A, and, as in [Lod97], we put |da| = |a| for homogeneous a.

Remark 1.3.5. We remark that with the convention in Formula 1.2, the generators for Ωn
A|k

satisfy
dxdy = −(−1)|x||y|dydx.

The differential δ in Ωn
A|k is given by

δ(adv1 ∧̄ · · · ∧̄ dvn) = (−1)n(δ(a)dv1 ∧̄ · · · ∧̄ dvn) +
n∑
i=1

(−1)εi(adv1 ∧̄ · · · ∧̄ dδ(vi) ∧̄ · · · ∧̄ dvn),

where εi = |a| +
∑i−1

j=1 |vj |, as above. The pair (Ω∗A|k, δ) is a DGA, whose product, denoted
by �, is defined as

(a0dv1 ∧̄ · · · ∧̄ dvp)� (a′dvp+1 ∧̄ · · · ∧̄ dvp+q) = (−1)eaa′dv1 ∧̄ · · · ∧̄ dvp+q,

where e = |a′|
∑p

i=1 |vi|.

Write A = ΛV and let π : HH(A, δ)→ (Ω∗A|k, δ) be the map defined by

πn(a, a1, ..., an) = 1/n!(a, da1 ∧̄ · · · ∧̄ dan).

Loday’s result is the following:

Proposition 1.3.6 ([Lod97, Proposition 5.4.6]). Let (ΛV, δ) be a free commutative DGA and
write A = ΛV . The map π : HH(ΛV, δ)→ (Ω∗A|k, δ) is a quasi-isomorphism of complexes. In
particular,

HH∗(A, δ) ∼= H∗(Ω
∗
(A,δ)).
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We will show that the map π∗ is not just a quasi-isomorphism of complexes, but also a
morphism of algebras.

Proposition 1.3.7. Let A = ΛV . The map π : (HH(A, δ), b) → (Ωn
A|k, δ) is a morphism of

DGAs.

Proof. We want to show that there is a commutative diagram

HH(A)p ⊗HH(A)q
πp ⊗ πq- Ωp

A ⊗ Ωq
A

HH(A)p+q

×
?

πp+q
- Ωp+q,

�
?

where × is the shuffle product and � is the product in Ω∗A defined above.
Let (a, a1, ..., ap) ∈ HH(A)p and (a′, ap+1, ..., ap+q) ∈ HH(A)q. We have

(a, a1, ..., ap)× (a′, ap+1, ..., ap+q) = (−1)e
∑
σ

(−1)f(σ)(aa′, aσ−1(1), ..., aσ−1(p+q)),

where the sum is taken over all (m,n)-shuffles σ and the signs are given by

f(σ) =
∑

{i<p+j |σ(i)>σ(p+j)}

|ai||aj |,

and e = |a′|
∑p

i=1 |ai|. Hence,

πp+q((a, a1, ..., ap) × (a′, ap+1, ..., ap+q))

=
1

(p+ q)!
(−1)e

∑
σ

(−1)f(σ)(aa′, daσ−1(1) ∧̄ · · · ∧̄ daσ−1(p+1)).

By reordering (aa′, daσ−1(1) ∧̄ · · · ∧̄ daσ−1(p+q)) as (aa′, da1 ∧̄ · · · ∧̄ dap+q), we introduce exactly

the sign (−1)f(σ) (see Remark 1.3.3), and therefore, since there are
(
p+q
n

)
shuffles, we see that

πp+q((a, a1, ..., ap)× (a′, ap+1, ..., ap+q)) =
1

(p+ q)!
(−1)e

(
p+ q

q

)
(aa′, da1 ∧̄ · · · ∧̄ dap+q)

= (−1)e
1

p!q!
(aa′, da1 ∧̄ · · · ∧̄ dap+q).

We have

π(a, a1, ..., ap)� π(a′, ap+1, ..., ap+q) = (−1)e
1

p!q!
(aa′, da1 ∧̄ · · · ∧̄ dap+q),

so the diagram is commutative, and π is an algebra-map.

Following [BV88], we let M be the bicomplex (M∗∗, δ
′, 0), with Mpq = (ΛV ⊗ΛqdV )p. The

horizontal differential δ′ is the unique derivation of degree -1 with δ′(a) = δ(a) if a ∈ V and
δ′(da) = −dδ(a), and the vertical differential is 0. Write A = ΛV , and denote the elements
of A⊗ Λn(dV ) by adv1 · · · dvn. The differential δ′ is given on A⊗ Λn(dV ) as

δ′(adv1 · · · dvn) = (−1)nδ(a)dv1 · · · dvn +
n∑
i=1

(−1)giadv1 · · · dδ(vi) · · · dvn,

where gi = (|a|+ 1) +
∑i−1

j=1(|vj |+ 1).
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Proposition 1.3.8. There is an isomorphism of DGAs

H∗ : (A⊗ Λ∗dV, δ′)→ (Ω∗A|k, δ),

given by
Hn(adv1 · · · dvn) = (−1)hnadv1 ∧̄ · · · ∧̄ dvn,

where hn is the sum of all the |vi| with odd i: hn =
∑

i odd |vi|.

Proof. We first show that the map is well-defined, i.e. that it respects the commutation rules.
Let σ ∈ Σn be a transposition of the elements k and l, where k ≤ l, in (1, ..., n). We check
that the diagram

A⊗ ΛndV
Hn- Ωn

A

A⊗ ΛndV

σ.
? Hn- Ωn

A

σ.
?

commutes, where σ. denotes the action of σ.
Let dv1 · · · dvn ∈ ΛndV. The action of σ is given by

σ.(dv1 · · · dvn) = (−1)e(σ)dvσ−1(1), ..., dvσ−1(n),

where
e(σ) =

∑
{i<j |σ(i)>σ(j) i≥k, j≤l}

(|vi|+ 1)(|vj |+ 1).

We have
Hn(σ.(dv1 · · · dvn)) = (−1)h

′(σ)+e(σ)dvσ−1(1), ..., dvσ−1(n),

where
h′(σ) =

∑
σ−1(j) odd

|vσ−1(j)|.

Similarly,
σ.(H(dv1 · · · dvn)) = (−1)hn+e′(σ)dvσ−1(1), ..., dvσ−1(n),

where
e′(σ) =

∑
{i<j |σ(i)>σ(j), i≥k, j≤l}

(|vi||vj |+ 1), and hn =
∑
i odd

|vi|.

Thus, we have to show that

h′(σ) + e(σ) ≡ hn + e′(σ) (mod 2),

or, equivalently, that∑
σ−1(j) odd

|vσ−1(j)| −
∑
i odd

|vi|+
∑

{i<j |σ(i)>σ(j), i≥k, j≤l}

(|vi|+ |vj |) ≡ 0. (1.3)

We have ∑
σ−1(j) odd

|vσ−1(j)| −
∑
i odd

|vi| =


vk − vl if k even and l odd,

vl − vk if k odd and l even,

0, otherwise.
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In the first two cases, the elements vk and vl cancel with elements coming from the last sum
in Formula 1.3, and the remaining terms add up to zero modulo 2. In the remaining two
cases, there is an odd number of elements that are jumped over twice to interchange vk and
vl, so the last sum is zero modulo 2.

Next, we show that the diagram

A⊗ ΛndV
Hn- Ωn

A

A⊗ ΛndV

δ′

? Hn- Ωn
A

δ
?

commutes. Let adv1 · · · dvn ∈ A⊗ ΛndV. We have

δ(Hn(adv1 · · · dvn)) = (−1)hn(δ(adv1 ∧̄ · · · ∧̄ dvn))

= (−1)hn(−1)nδadv1 · · · dvn

+
n∑
i=1

(−1)hn+εiadv1 ∧̄ · · · ∧̄ dδvi ∧̄ · · · ∧̄ dvn.

Similarly,

Hn(δ′(adv1 · · · dvn)) = Hn(δ′(adv1 · · · dvn))

= (−1)hn(−1)nδadv1 · · · dvn

+

n∑
i=1

(−1)i−1(−1)hn+giadv1 · · · dδvi · · · dvn.

Since hn + εi = (i− 1) + hn + gi, the diagram commutes.

Corollary 1.3.9. Let V be a graded module. There is an isomorphism of graded algebras

π∗HH(HH(ΛV, δ))→ H∗(Λ(V ⊕ d1V ⊕ d2V ⊕ d2d1V ), δ′′),

where δ′′ is given by δ′′(a) = δ(a), δ′′(d1a) = −d1δ(a) δ′′(d2a) = −d2δ(a) and δ′′(d2d1a) =
d2d1δ(a).

Proof. From Proposition 1.3.6 and Proposition 1.3.7, we have that there is a quasi-isomorphism
of algebras

π : HH(ΛV, δ)
∼→ (Ω∗A, δ),

and by Proposition 1.3.8 there is an isomorphism of DGAs (Ωn
A|k, δ)

∼= (A⊗ΛndV, δ′). Hence,
there is a quasi-isomorphism

HH(HH(ΛV, δ))
∼→ HH(Λ(V ⊕ d1V ), δ′),

but, by Proposition 1.3.6 and Proposition 1.3.8 again, there is a quasi-isomorphism

HH(Λ(V ⊕ d1V ), δ′)
∼→ (Λ((V ⊕ d1V )⊕ (d2V ⊕ d2d1V )), δ′′),
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where the differential δ′′ is given by

δ′′(a) = δ′(a) = δ(a),

δ′′(d1a) = δ′(d1a) = −d1δ(a),

δ′′(d2a) = −d2δ
′(a) = −d2δ(a),

δ′′(d2d1a) = −d2δ
′(d1a) = d2d1δ(a)

This result will be used to calculate the second iterated Hochschild homology of some
CDGAs.

1.3.2 Example 1

Let A = k[t], with |t| = 0. Then A = ΛV , where V = kt is the free module of rank 1 and
δ = 0. By Corollary 1.3.9,

π∗HH(HH(A, δ)) ∼= H∗(Λ(V ⊕ d1V ⊕ d2V ⊕ d2d1V, δ
′′),

and from the description of the differential given in the corollary, we see that δ′′ = 0. Thus

π∗HH(HH(A)) ∼= ΛV ⊗ Λd1V ⊗ Λd2V ⊗ Λd2d1V.

If we put ε = d1t, η = d2t, and x = d2d1t, then we can write

π∗k[t]⊗T
2 ∼= π∗HH(HH(k[t])) ∼= k[t]⊗ k[ε]/ε2 ⊗ k[η]/η2 ⊗ k[x] ∼= k[t, ε, η, x]/ε2 = η2 = 0,

where |t| = 0, |ε| = 1, |η| = 1, and |x| = 2.

Remark 1.3.10. There is an isomorphism

k[t]⊗X ∼=
⊕
n≥0

tnk[Spn(X)],

where Spn(X) denotes the n-th symmetric product of X, i.e. the n-fold product of X divided
out by the action of the symmetric group.

By [Mil69], the homology of Spn(T 2) is given by

H∗(Sp
n(T 2)) ∼= H∗T

2 ⊗H∗(CPn−1) ∼= k[ε]/ε2 ⊗ k[η]/η2 ⊗ k[ξ]/ξn,

where ε and η have degree 1 and ξ has degree 2. Hence, we can write

π∗(k[t])T
2 ∼= H∗T

2 ⊗ (⊕tnk[ξ]/ξn) .

But ⊕tnk[ξ]/ξn ∼= k[t, tξ], so if we let x = tξ, we get

π∗(k[t])⊗T
2 ∼= k[t, ε, η, x]/ε2 = η2 = 0,

just as above.
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1.3.3 Example 2

We calculate the second iterated Hochschild homology of the truncated polynomial algebra
A = k[ε]/ε2. By [Lod97, 5.4.14], A admits the free model (ΛV, δ) where V = kx⊕ky, δ(x) = 0,
δ(y) = x2, |x| = 0, and |y| = 1, and, by Lemma 1.3.9,

π∗HH(HH(ΛV, δ)) ∼= H∗(Λ(V ⊕ d1V ⊕ d2V ⊕ d2d1V ), δ′′).

The generators for Λ(V ⊕ dV ⊕ dV ⊕ d2V ) are x, d1x, d2x, d2d1x, y, d1y, d2y and d2d1y, and
d2y, and we have d1x

2 = d2x
2 = y2 = d2d1y

2 = 0.
Using the description of the differential given in Lemma 1.3.9 , we get that

δ′′(x) = 0, δ′′(y) = x2, δ′′(d1x) = δ′′(d2x) = 0,

δ′′(d1y) = −2xd1x, δ′′(d2y) = −2xd2x,

δ′′(d2d1x) = 0, δ′′(d2d1y) = 2xd2d1x,

—————————————————————————————
In the following table, the entries in the second column are the generators, and the entries

on the right are their images under δ′′.

(I)j (dy)j −2jx(dx)(dy)j−1

(II)j y(dy)j x2(dy)j + 2jyx(dx)(dy)j−1

(III)j (dy)j(d2y) −2jx(dx)(dy)j−1d2y + 2x(dy)j(d2x)
(IV)j y(dy)j(d2y) x2(dy)j(d2y) + 2jyx(dx)(dy)j−1(d2y)− 2xy(dy)j(d2x)

For convenience, we write down the following table,

dx(I)j (dx)(dy)j 0
dx(II)j (dx)y(dy)j x2(dx)(dy)j

dx(III)j (dx)(dy)j(d2y) 2x(dx)(dy)j(d2x)
dx(IV)j (dx)y(dy)j(d2y) x2(dx)(dy)j(d2y)− 2x(dx)y(dy)j(d2x),

which shows the elements of the previous table after multiplication by dx.
One can check that the only elements of ker(δ′′) are, up to multiples by x and d2x, of the

form

(1)j dx(I)j
(2) x(III)0 − 2(II)0(d2x)
(3)j 2(j + 1)(dx)(II)j − x(I)j+1

(4)j (j + 1)(dx)(III)j − (I)j+1(d2x).

Remark 1.3.11. A systematic way to check which elements can be in the kernel of δ′′ is to
consider the elements y, ydy, and d2y in turn.

All these elements are in the image of δ′′ after multiplication by x. Indeed,

x · (1)j = −1/(2(j + 1))δ′′(Ij+1),

x · (2)j = δ′′(IV0),

x · (3)j = −δ′′(IIj+1),

x · (4)j = −1/2δ′′(IIIj+1).

Moreover, from the first table we see that all elements in the image of δ′′ have an x-factor,
and the only elements in the kernel, and not in the image, are of the form



18 Hochschild Homology

aj = (1)j = dx(dy)j ,

b = (2) = xd2y − 2yd2x,

cj = (3)j = 2(j + 1)dxy(dy)j − x(dy)j+1,

dj = (j + 1)dx(dy)jd2y − (dy)j+1d2x.

Hence,

π∗HH(HH(k[x]/x2])) ∼= H∗(Λ(V ⊕ d1V ⊕ d2V ⊕ d2d1V ), δ′′) ∼= k[d2x]〈aj , b, cj , dj〉.

That is, the second order Hochschild homology of k[ε]/ε2 is a k[d2x]-module on the generators
aj , b, cj , and dj . The degrees are |aj | = 2j + 1, |b| = 3, |cj | = 2j + 2, and |dj | = 2j + 4.

Remark 1.3.12. We remark that

ajak = 0,

b2 = 0,

cjck = 0 (it’s in the boundary),

djdk = (j − k)dxd2y(dy)j+k+1d2x,

ajck = xaj+k+1 = 0,

ajdk = −aj+k+1d
2x,

bcj = 0 (in the boundary),

for all j and k.



Chapter 2

Operations and Decompositions of
Hochschild Homology

There is a natural decomposition

πnF (S1) ∼=
n⊕
i=0

H(i)
n (F ),

which in the case F = L(A) is known as the Hodge decomposition of Hochschild homology. It
was obtained by Loday ([Lod89]), and independently by Gerstenhaber and Schack ([GS87]),
by giving the Hochschild complex a Hopf-algebra structure (that is, a structure of a bialgebra
with certain relations between its multiplication and comultiplication – see e.g. [Lod97,

Appendix A.2]), and using this structure to define some orthogonal idempotents e
(i)
n in Q[Σn],

called the eulerian idempotents. The eulerian idempotents were shown to commute with the
Hochschild boundary

be(i)
n = e

(i)
n−1b, if n ≥ 1, and 1 ≤ i ≤ n,

so the Hochschild complex HH(F ) splits into a direct sum of complexes

HH(i)
n (F ) := e(i)

n HHn(F ).

The decomposition follows by taking homology.
By using the eulerian idempotents, one can define operations on the Hochschild complex,

called λ-operations, or Adams operations, by

λ̄kn := ke(1)
n + · · ·+ kne(i)

n , n ≥ 1.

Later, McCarthy ([McC93]) gave a geometric interpretation of these operations by using
edgewise subdivision of a simplicial set and the r-fold covering maps of the circle.

In [Pir00b], Pirashvili gave a generalization of the decomposition of Loday by a completely
different route, involving the construction of a spectral sequence abutting to π∗F (X). Here
F : Γ → k-mod is any functor and X any pointed simplicial set. He showed that in the
special case where X is Sn, the spectral sequence degenerates, and that in the case n = 1
the resulting decomposition corresponds to Loday’s decomposition. In the first section of this
chapter we will give a presentation of these results and use his methods to get a decomposition
of π∗F (Tn).

19
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Using methods similar to McCarthy’s, Bauer ([Bau]) was able to further generalize this
result. More precisely, by showing that A⊗S

1∧X is a Hopf algebra, she got a decomposition
of πnA

⊗S1∧X . We will look at her methods in Section 2.2 and use them to define the Adams
operations on higher order Hochschild homology.

2.1 Pirashvili’s Decomposition of Hochschild Homology

As before, Γ is the category of finite pointed sets and basepoint-preserving maps. Following
[Pir00b], we let Γ-mod denote the category of all covariant functors from Γ to the category
of k-modules and let mod−Γ denote the category of all contravariant functors. We write
Γn := k[HomΓ(−, n+)] and Γn := k[HomΓ(n+,−). These are, for n ≥ 0, projective generators
of the categories Γ−mod and mod−Γ, respectively. There is a bifunctor −⊗Γ− : (mod−Γ)×
(Γ−mod)→ k-mod such that

F (n+) = F (−)⊗Γ Γn

F (n+) = Γn ⊗Γ F (−).

Moreover, − ⊗Γ − is a left balanced bifunctor (in the sense of [Wei94]), so its left derived
functors with respect to each variable are isomorphic. We denote this common value by
TorΓ
∗ (−,−).

Remark 2.1.1. This construction works with any small category C in place of Γ. That is, for
any small category C one can define the categories C −mod and mod−C, the tensor product
−⊗C−, and the derived functor TorC∗(−,−), all defined in an analogous way to the case C = Γ
above. See [PR02].

The basic spectral sequence, from which we get all the decomposition results, is given by
the following proposition.

Proposition 2.1.2 ([Pir00b, Proposition 1.6]). Let F be an object of Γ−mod and let C∗ be a
nonnegative chain complex of Γ-modules, whose components are projective objects of mod−Γ.
Then there exists a first quadrant spectral sequence

E2
pq = TorΓ

p (Hq(C∗), F )⇒ Hp+q(C∗ ⊗Γ F ).

Suppose
Extm−n+1

mod−Γ(Hn(C∗), Hm(C∗)) = 0, for n < m.

Then the spectral sequence is degenerate at E2, and one has the decomposition

Hn(C∗ ⊗Γ F ) ∼=
⊕
p+q=n

TorΓ
p (Hq(C∗), F ),

which is natural in F .

Remark 2.1.3. There is a completely analogous result where Γ is replaced by the category
of all finite sets F (see [Pir00b, Section 3.2]). This version will be used in Chapter 4, where
we look at a decomposition of cyclic homology.

By using this result, one can construct a spectral sequence converging to the homology of
F (X), where F is as before and X is a based simplicial set.
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Theorem 2.1.4 ([Pir00b, Theorem 2.4]). Let F be a left Γ-module and let X be a based
simplicial finite set. Then there exists a spectral sequence

E2
pq = TorΓ

p (Jq(H∗X), F ) =⇒ πp+q(F (X)),

where F (X) is the composition

∆o X
- Γ

F
- K −Mod.

Moreover, any simplicial map X → X ′ induces an isomorphism π∗(F (X)) → π∗(F (X ′)) as
soon as H∗(X)→ H∗(X

′) is an isomorphism.

Pirashvili proved this result by constructing a chain-complex ΓX whose homology is given
by Hi(ΓX) ∼= Ji(H∗X), in such a way that F (X) ∼= ΓX ⊗Γ F . By using C∗ = ΓX in
Proposition 2.1.2, he obtained the result.

The following objects of Γ-mod are of special importance.

Definition 2.1.5. (a) Let t be the contravariant functor t : Γ → k-mod that is given on
objects by

t(n+) = homSets∗(n+, k),

where Sets∗ is the category of pointed sets. It is given on morphisms by precomposition.

(b) The Γ-module θ is given on an object n+ as the dual of the module

(θn)∗(n+) = k{S ⊂ n+||S| ≤ n}/k({S ⊂ n+|0 ∈ S} ∪ {S ⊂ n+||S| < n}).

A morphism f : m+ → n+ induces a morphism given by

f∗(S) =

{
0, if 0 ∈ f(S) or |f(S)| < n

f(S), otherwise.

In [Pir00b, Section 1.8], Pirashvili calculated L(k[x]/x2), where the generator x has degree
d > 0. We repeat the argument for odd d here.

Lemma 2.1.6 ([Pir00b, Example 1.8]). Let |x| = d, where d > 0. We have

Li(k[x]/x2) ∼=


Λjt∗ if i = jd and d is odd

(θj)∗ if i = jd and d is even

0 if i 6= jd

,

where Λi is the exterior product and F ∗ is the dual of the functor F .

Proof. Let A = k[x]/x2. We give Pirashvili’s proof of this result in the case where d is odd.
We first prove that Ljd(A)(n+) and Λjt∗(n+) are isomorphic. We have

L(A)(n+) = (k ⊕ kx)⊗n =
⊕

0≤j≤n
(kx⊗j)(

n
j),
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so Li(A) = 0 if i 6= jd, and

Ljd(A)(n+) ∼= k(nj).

A basis for Ljd(A)(n+) is given by the elements xJ = (x1, ..., xn), where J runs over the
set of j-element subsets of {1, ..., n} and

xi =

{
x, if i ∈ J
1, if i 6= J,

.

There is an isomorphism

Λjt∗(n+) ∼= Ljd(A)(n+),

given by sending a j-element subset J of {1, ..., n} to xJ .

Now let f : m+ → n+ be a morphism in Γ. On the basis elements of Ljd(A)(n+) we have

f∗(x1, ..., xm) = (−1)ε(f,x)(b1, ..., bn),

where bj =
∏
j=f(i) xi. Since x2 = 0, we get that

f∗(x1, ..., xn) =

{
0, if |f(J)| < j

xf(J), if |f(J)| = j.

The sign is given by Formula 1.1 above, i.e.

ε(f, x) =

n−1∑
j=1

|xj |

 ∑
{k | k>j, 0≤f(k)≤f(j)}

|xk|

 .

Hence,

ε(f, x) = Σl∈Jd
2p,

where p = #{k > l|f(k) ≤ f(l)}. We have to show that this sign agrees with the one in the
exterior power.

The module Λjt∗(n+) is generated by objects of the form i1 ∧ i2 ∧ · · · ∧ ij , where the ik’s
are ordered and ij ≤ n. The map induced by an f : m+ → n+ is given on these generators by

f∗(i1 ∧ · · · ∧ ij) = (−1)ε(f(ik1) ∧ f(ik2) ∧ · · · ∧ f(ikj )),

where the ε in the sign is the number of transpositions needed to order the terms in ascending
order. Since ε(f, a) = d2ε, the sign agrees with the one above.

Since the dual of the algebra H∗(S
d) can be written as ∼= k[x]/x2, where |x| = d, we get

Ji(H∗Sd) ∼=


Λjt if i = jd and d is odd

θj if i = jd and d is even

0 if i 6= jd

by dualizing the above result.
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The following proposition gives a decomposition of π∗A
⊗Sd

.

Proposition 2.1.7 ([Pir00b, Corollary 2.5]). Let F ∈ Γ-mod. Then there exists a spectral
sequence

E2
pq ⇒ πp+qF (Sd), d ≥ 1,

with E2
pq = 0 if q 6= dj

E2
pq = TorΓ

p (Λjt, F ) if q = dj and d is odd, and,

E2
pq = TorΓ

p (θj , F ) if q = dj and d is even,

Moreover, the spectral sequence degenerates:

πnF (Sd) ∼=
⊕

p+dj=n

TorΓ
p (Λjt, F )

if d is odd, and

πnF (Sd) ∼=
⊕

p+dj=n

TorΓ
p (θj , F )

if d is even.

The existence of this spectral sequence follows from Theorem 2.1.4 and the calculations
done in Lemma 2.1.6. The fact that the sequence degenerates is shown by checking that the
extension criterion in Proposition 2.1.2 is satisfied. In the cases involving Λit, this is easy,
because Λit is injective for all i ([Pir00b, Section 1.4]).

Pirashvili has shown that the decomposition for d = 1 coincides with Loday’s decomposition
in [Lod89],

πnF (S1) ∼=
n⊕
i=0

H(i)
n (F )

for every left Γ-module. That is, for any i ≥ 1, one has a natural isomorphism

H(i)
n (F ) ∼= TorΓ

n−i(Λ
it, F ), n ≥ i.

In fact, in [Pir00b, Theorem 2.7] Pirashvili gives an axiomatic characterization of the decom-
position of πnF (S1) by showing that any natural decomposition having certain properties is
of the form in Proposition 2.1.7.

By using Theorem 2.1.4 in the case where X is the n-torus, we get a decomposition of
π∗F (Tn), and hence of iterated Hochschild homology.

Corollary 2.1.8. There exists a spectral sequence

E2
pq =

⊕
m1+m2+···+mn=q

TorΓ
p (Λm1t⊗ Λm2t⊗ · · · ⊗ Λmnt, F ) =⇒ πp+qF (Tn).

Moreover, the spectral sequence degenerates:

πrF (Tn) ∼=
⊕

m1+m2+···+mn+p=r

TorΓ
p (Λm1t⊗ Λm2t · · · ⊗ Λmnt, F ).
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Proof. We have

H∗(T
n) ∼= H∗(S

1)⊗ · · · ⊗H∗(S1),

and for any cocommutative k-coalgebra C and C ′, we have Jq(C ⊗ C ′) ∼= ⊕m+n=qJm(C) ⊗
Jn(C ′). Thus,

Jq(H∗(Tn)) ∼=
⊕

m1+···mn=q

(
Jm1(H∗S

1)⊗ · · · ⊗ Jmn(H∗S
1)
)
.

The existence of the spectral sequence follows from Theorem 2.1.4 and the calculation in
Lemma 2.1.6.

The fact that the spectral sequence degenerates follows from Proposition 2.1.2, because
Λit is injective, and hence ⊗n1 Λmit is injective ([Pir00b, Section 1.3]) and

Extjmod−Γ(−,⊗n1 Λmit) = 0

for j > 0 ([Pir00b, Section 1.3]).

2.1.1 Smooth Functors

The concept of smoothness of functors is explored in [Pir00b, Section 4.3], where the following
theorem, called the Hochschild–Kostant–Rosenberg theorem for functors (HKR-theorem), can
be found.

Theorem 2.1.9 ([Pir00b, Theorem 4.6] (HKR)). Let F be a smooth left Γ-module, and let
X be a connected pointed simplicial set. Then

πkF (X) ∼= Jk(H∗X)⊗Γ F.

The following lemma enables us to use this theorem for Hochschild homology of smooth
algebras A.

Lemma 2.1.10 ([Pir00b, Lemma 4.5]). Let A be a smooth commutative algebra of finite type.
Then L(A) is a smooth functor.

Hence, if A is a finitely generated smooth algebra, then the HKR-theorem implies that

πkA
⊗Tn

=

 ⊕
m1+···+mn=k

Λm1t⊗ · · · ⊗ Λmnt

⊗Γ L(A).

In the case n = 1, this description, together with the concept of cross effect for functors,
can be used to show that

πkA
⊗Sn ∼= Ωn

A, (2.1)

where Ωn
A are the Kähler differentials (see [Pir00b, Proposition 1.15].) We will display some

of the ingredients that go into this result.
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Cross effect. As in [Pir00b], we let Ω denote the category of finite sets 〈n〉 := {0, 1, ..., n}
and surjections. According to Remark 2.1.1, one can define the categories mod−Ω and
Ω−mod, and the tensor product −⊗Ω − – just as for the category Γ.

In [Pir00a], Pirashvili has shown that there is an equivalence between the categories Γ−
mod and Ω − mod, and between mod−Γ and mod−Ω, given by the so-called cross–effect
functors. This allows calculations to be done in the much smaller category Ω rather than in
the category Γ.

We sketch the construction of the cross–effect functors here. For details, see [Pir00b,
Section 1.10].

Let n ≥ 1 and 1 ≤ i ≤ n, and let ri be the map ri(n+)→ (n− 1)+ defined by

ri(j) =


0, if j = i,

j, if j < i,

j − 1, if j > i.

Now let T be an object of Γ−mod. Then the cross effect of T is the functor cr(T ) in Ω−mod
defined on objects by

cr(T )(〈n〉) = ker(r∗ : T (n+)→
n∏
i=1

T ((n− 1)+)).

Similarly, if F is in mod−Γ, then there is an object of mod−Ω defined on objects by

cr(T )(〈n〉) = coker(r∗ :
n⊕
i=1

T ((n− 1)+)→ T (n+).

Theorem 2.1.11 ([Pir00a, Theorem 3.1]). The functors

cr : Γ−mod→ Ω−mod,

cr : mod−Γ→ mod−Ω

are equivalences of categories.

We also get that, for F ∈ Γ−mod and T ∈ mod−Γ,

F ⊗Γ T ∼= cr(F )⊗Ω cr(T )

(see [Pir00b, Section 1.10]). Hence, the HKR-theorem (Theorem 2.1.9) shows that

πkF (X) ∼= cr(Jk(H∗X))⊗Ω cr(F ).

This description was used by Pirashvili to prove the result quoted in (2.1) above, and it could
potentially be used to give a description of iterated Hochschild homology for smooth algebras.

As a step towards this end, one can show that

cr(Λm1t⊗ · · · cr(Λmnt)(l+) = kXl ,

where

Xl = {1 ≤ i(1)
1 < · · · < i(1)

m1
≤ l, ..., 1 ≤ i(n)

1 < · · · < i(n)
mn
≤ l

| {i(1)
1 , ..., i(1)

m1
, ..., i

(n)
1 , ..., i(n)

mn
} = {1, ..., l}}.
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2.2 Operations on Hochschild homology

Since the construction A⊗X is functorial in X, every endomorphism on X gives an operation
on A⊗X . In the special case X = S1, there are the so-called Adams operations constructed
in [McC93]. These are based on the r-fold covering map of S1 and edgewise subdivision of
simplicial sets, and they recover Loday’s Adams operations up to a sign. Indeed, McCarthy
has shown that for any functor F : Γ→ Sets, the composition F ◦S1 has a system of natural
operators generated by the covering maps of the circle, and that this system generates Loday’s
Adams operations if F is a functor Γ→ Ab.

In [Bau], Bauer has shown that for any simplicial set X, similar constructions on S1 ∧X
give a decomposition of A⊗S

1∧X that recovers Pirashvili’s decomposition in the case X =
Sn−1. This was done by defining a Hopf–algebra structure on the complex A⊗S

1∧X , and
then using this structure to get Adams operations and eulerian idempotents, from which the
decomposition follows (as in [LQ84] and [GS87]). In this section, we will recall McCarthy’s
and Bauer’s constructions and show how they apply to higher Hochschild homology.

We start by defining edgewise subdivisions and systems of natural operators on a simplicial
set X, in the sense of [McC93]. This definition has been extended by Bauer to the case S1∧X,
and she has shown that there are operators Φr on the complex F (S1∧X) constructed by using
covering maps of the circle. This can be used to define the Adams operations on A⊗S

1∧X

and obtain a decomposition of πrA
⊗S1∧X . In the case X = Sn−1, Bauer has shown that

the decomposition recovers Pirashvili’s decomposition of πrA
⊗Sn

in Proposition 2.1.7 above,
because the operators Φr act as multiplication by rj on both the j-th part of Pirashvili’s and
of Bauer’s decompositions. We will use Bauer’s constructions to define Adams operations on
higher order Hochschild homology, and, in a similar way as for Bauer’s decomposition, we
will show how they relate to the decomposition obtained in Corollary 2.1.8. Our exposition
is based on [Bau] and [McC93].

2.2.1 Bauer’s Constructions

Let sdr : ∆ → ∆ be the functor sending [n] to [n] q · · · q [n], and let X be a simplicial set.
The r-th edgewise subdivision of X is the composition of functors X ◦ sdr, written sdr(X).

Let X be a simplicial set. Following [McC93], we call a collection of simplicial maps
φr : sdrX → X, r ∈ N, a natural system of operators on X if

sdrs(X)
sdr(φ

s)
- sdr(X)

X

φr

?
φ rs -

commutes for all r, s in N.

Let dr : ∆n−1 → ∆rn−1 be the diagonal map

dr(u) = u/r ⊕ · · · ⊕ u/r.

Lemma 2.2.1 ([BHM93]). For a simplicial set X, the map 1 × dr : Xrn−1 × ∆n−1 →
Xrn−1 ×∆rn−1 induces a homeomorphism Dr : | sdrX| ∼= |X| on realizations.
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From a natural system of operators φr on X, we get a system of operators Φr on |X| through
the composite

Φr : |X| D
−1
r−→ |sdr(X)| |φ

r|−→ |X|.

Based on the diagram

sdrs S
1 ∧X

sdr(φ
s) ∧ 1
- sdr S

1 ∧X

S1 ∧X,

φr ∧ 1
?

φ rs∧ 1 -

Bauer has extended McCarthy’s definition of a natural system of operators on X to natural
systems of operators on S1 ∧X ([Bau]).

As in McCarthy’s case, a natural system of operators gives rise to maps Φr through the
composite

|S1 ∧X|
∼=- |S1| ∧ |X|

|sdrS1| ∧ |X|

D−1
r ∧ 1

? |φr| ∧ 1
- |S1| ∧ |X|

∼=- |S1 ∧X|.

There is a certain system of natural operators φr on S1 so that Φr corresponds to the
r-fold covering of the circle in S1 ∧ X. The system was constructed in [Bau, Example 3.2],
where it was shown that it could be defined as the composition of what she called the pinch
map pr : sdrS

1 → S1 ∨ · · · ∨ S1 and the fold map + : S1 ∨ · · · ∨ S1 → S1.

Bauer has shown that the operators Φr : |S1 ∧X| → |S1 ∧X| we get from this system can
be extended to operators

Ψr : |F (S1 ∧X)| → |F (S1 ∧X)|

([Bau, Theorem 3.3]). Moreover, she has shown that the operators Ψr can be defined on the
chain level. To do this, she used the following two lemmas.

Lemma 2.2.2 ([McC93, Proposition 3.4]). Let X be a simplicial abelian group. Then there
is a natural chain map

D(r) : C∗X → C∗(sdrX)

that passes to the normalized complex. Furthermore, for all r ∈ N, D(r) is a quasi-isomorphism,
and H∗(D(r)) = π∗(Dr)

−1.

Lemma 2.2.3 ([Bau, Lemma 4.2]). There is a natural chain equivalence

D(r) ∧ 1 : C∗F (S1 ∧X)→ C∗(F (sdr S
1 ∧X).

Theorem 2.2.4 ([Bau, Theorem 4.3]). If Φr is given by

Φr : F (S1 ∧X)
D(r)∧1−→ F (sdrS

1 ∧X)
F (φr∧1)−→ F (S1 ∧X),

then Φr is well defined on the chain level. Moreover, these maps Φr agree with the maps Ψr

on homology.
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In the case X = ∗ and F = L(A), McCarthy ([McC93]) has shown that the operators Φr,
arising from the system in [Bau, Example 3.2], agree with Loday’s Adams operations λr on
the complex A⊗S

1
up to a sign. For an arbitrary X, the operators Φr are called the Adams

operations on A⊗S
1∧X .

In [Bau, Section 5], Bauer shows that the Hopf–algebra structure on the Hochschild complex
giving rise to the decomposition can be expressed in terms of the pinch and fold map on the
circle, and by using this viewpoint, she was able to extend the Hopf–algebra structure to the
chain complex A⊗S

1∧X . Specifically, she shows the following results:

Lemma 2.2.5 ([Bau, Lemma 5.2 and Lemma 5.3]). Let µf be the chain map

A⊗S
1 ⊗A A⊗S

1 ∼= A⊗S
1∨S1 → A⊗S

1

induced by the fold map S1 ∨ S1 → S1, and let ∆p be the chain map

A⊗S
1 '→ A⊗sd2S

1 → A⊗S
1∨S1

induced by the pinch map sd2S
1 → S1 ∨ S1. By letting these be the multiplication and

comultiplication, respectively, the Hochschild complex is a commutative graded Hopf algebra
over A, up to homotopy. Moreover, this Hopf–algebra structure agrees with the Hopf–algebra
structure defined by Loday and Gerstenhaber–Schack on the normalized Hochschild complex.

Theorem 2.2.6 ([Bau, Theorem 5.5]). The total complex of the bicomplex A⊗S
1∧X is a

commutative bigraded Hopf algebra, with multiplication induced by the fold map on S1 and
comultiplication induced by the pinch map on S1.

By using this Hopf–algebra structure, one gets eulerian idempotents (see e.g. [Lod89],
[Lod97], or [GS87]), and Bauer has shown that the Adams operations satisfy the relation

Φr = re(1)
n + · · ·+ rne(n)

n . (2.2)

By e.g. [Lod89], the eulerian idempotents commute with the Hochschild boundary, and this
fact leads to the decomposition of πnHH

S1∧X(A).

Theorem 2.2.7 ([Bau, Theorem 6.1]). Let X be any simplicial pointed set. Then

πnA
⊗S1∧X = πne

(1)
n A⊗S

1∧X ⊕ · · · ⊕ πne(n)
n A⊗S

1∧X ,

where πne
(n)
n A⊗S

1∧X is the n-th homology of the complex e
(n)
n A⊗S

1∧X .

The decomposition agrees Pirashvili’s decomposition in the case X = Sn−1 ([Bau, Theorem
7.3]). This can be proved by showing that the Adams operations Φr act by multiplication by
rj on the terms TorΓ

p (Jjd(H∗Sd),L(A)), as well as on the j-th term in Bauer’s decomposition.
For Bauer’s decomposition, this fact follows directly from Formula 2.2, and for Pirashvili’s
decomposition Bauer proves the following lemma.

Lemma 2.2.8 ([Bau, Lemma 7.2]). The map Φr acts on TorΓ
p (Jdj(H∗Sn),L(A)) by multipli-

cation by rj.
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Proof. We give Bauer’s proof of this lemma.
We have J (H∗S

d)(n+) = (H∗S
d)⊗n = (k⊕kx)⊗n, where we have written H∗S

d = k⊕kx,
with |x| = d. From Lemma 2.1.6, we have

Ji(H∗Sd)(n+) =

{
0, if i 6= jd

(kx⊗j)(
n
j), if i = jd.

By the definition of Φr, it acts on H∗S
d = k ⊕ kx by multiplication by r on kx, so it acts as

multiplication by rj on Jjd(H∗Sd)(n+). This does not depend on n, so the same result holds
for Jjd(H∗Sd).

Since Φr is defined on the chain level, this completes the proof.

2.2.2 Operations on Higher Hochschild Homology

We write rn = (r1, ..., rn) and

sdrn T
n := sdr1 S

1 × · · · × sdrn S
1.

Analogous to the definition in the previous section, we define a natural system of operators
on Tn as a collection of operators φrn : sdrnT

n → Tn that make the diagram

sdrnsn T
n sdrn(φsn)

- sdrn T
n

Tn

φrn
?

φ
rnsn -

commute. These operators give rise to operators Φrn on |Tn| defined as follows:

Φrn : |Tn|
∼= - |S1| × · · · × |S1|

|sdr1S1| × · · · × |sdrnS1|

D−1
r1 × · · · ×D

−1
rn ? |φr1 | × · · · × |φrn |- |S1| × · · · × |S1|

|Tn|.

∼=
?

The natural system of operators defined in [Bau, Example 3.2] gives a system of operators
Φr on |Tn| that corresponds to the coverings of the torus.

Consider the operators

D(rn) = D(r1)× · · · ×D(rn) : C∗F (Tn)→ C∗F (sdrn T
n),

where D(ri) is as in Lemma 2.2.2. As in Bauer’s case, we get the following result:

Corollary 2.2.9. If Φrn is given by

Φrn : F (Tn)
D(rn)→ F (sdrn T

n)
F (φrn )−→ F (Tn),

then Φrn is defined on the chain level.
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Following Bauer, we can get at the relation between the operator Φrn = Φr1 ⊗ · · · ⊗ Φrn

and the decomposition in Corollary 2.1.8. Similar to Bauer’s result as stated in Lemma 2.2.8,
we have the following result:

Lemma 2.2.10. The map Φrn acts as multiplication by⊕
m1+···+mn

rm1
1 rm2

2 · · · rmn
n

on ⊕
p+q=n

TorΓ
p (Jq(H∗Tn),L(A)).

Proof. From the proof of Corollary 2.1.8, we have

Jq(H∗Tn) ∼=
⊕

m1+···mn=q

Jm1(H∗S
1)⊗ · · · ⊗ Jmn(H∗S

1).

So the result can be proven exactly as in Lemma 2.2.8.

⊕Jm1(H∗S
1)⊗ · · · ⊗ Jmn(H∗S

1)
⊕rm1

1 rm2
2 · · · rmn

n- ⊕Jm1(H∗S
1)⊗ · · · ⊗ Jmn(H∗S

1)

Jq(H∗(Tn))
?

- Jq(H∗(Tn)).
?

2.2.3 Further Operations

As mentioned in the introduction to this section, every endomorphism on X gives an operation
on A⊗X since the construction is functorial in X. Thus, all operators on Tn give operators
on A⊗T

n
, and since

End(Tn) = End(BZn) = End(Zn) = MnZ

in the homotopy category, we can write the operations as (n× n)-matrices with entries in Z.
The Adams operations defined in the previous section then correspond to the matrices

r1 0 · · · 0 · · ·
0 r2 · · · 0 · · ·
· · · · · · · · · · · · · · ·
0 0 · · · 0 rn

 .

As another example, the matrix (
0 1
1 0

)
will give an operation τ on A⊗(S1×S1) that interchanges the two circles. This follows from the
simplicial model we have used for S1 (Section 1.1).
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Example 2.2.11. Let A = k[t], with |t| = 0. From Remark 1.3.10, we have

k[t]⊗T
2 ∼=

⊕
n≥0

tnk[Spn T 2],

and that

π∗(k[t])⊗T
2 ∼= H∗T

2 ⊗

⊕
n≥0

tnk[ξ]/ξn

 ∼= k[t, ε, η, x]/ε2 = η2 = 0.

Hence, the effect of applying an operation given by a matrix B ∈ M2Z to π∗(k[t])⊗T
2

is
determined by the effect it has on H∗T

2. Therefore, a (2× 2)-matrix B(
a b
c d

)
operates on π∗(k[t])⊗T

2
by

ε 7→ aε,

η 7→ dη,

x 7→ det(B)x.

For example, the matrix (
0 1
1 0

)
interchanges ε and η, and it sends x to −x in π∗(k[t])⊗T

2
. As another example, the matrix(

r 0
0 s

)
sends ε to rε, η to sη, and x to rsx.

More generally, if A is a CDGA with differential 0, then the matrix(
0 1
1 0

)
operates on HH(HH(A, 0)) ∼= (Λ(V ⊕ d1V ⊕ d2V ⊕ d2d1V ), 0) by interchanging d1 and d2,
so it sends (Λ(V ⊕ d1V ⊕ d2V ⊕ d2d1V ), 0) to (Λ(V ⊕ d2V ⊕ d1V ⊕−d1d2V ), 0).
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Chapter 3

Cyclic Homology

Connes has observed that the realization of the Hochschild complex has a circle action, and
that the cyclic homology of the algebra A is the homotopy of the homotopy orbits under this
action.

Theorem. There is a canonical isomorphism

HCqA ∼= πq|A⊗S
1 |hS1 .

This is a special case of a more general result that can be explained as follows. Let M be a
cyclic simplicial abelian group. Then, according to [DHK85], the realization of the underlying
simplicial abelian group has an action by the circle group T1 (Section 3.2.2). The result then
says that the cyclic homology groups of M agree with the homotopy groups of the homotopy
orbits of the realization under the action of the circle group ([Jon87]). We will define n-th

order cyclic homology, written HC
[n]
∗ (A), and generalize the above theorem by showing that

HC [n]
q (A) ∼= πq|A⊗T

n |hTn .

That is, n-th order cyclic homology will turn out to be the homotopy orbits of the n-th order
Hochschild complex under the action of the n-torus.

We start out by defining cyclic objects and cyclic homology of these. In Section 3.2, we
will give a proof of the above results.

3.1 Cyclic Objects and Cyclic Homology

A cyclic object X in a category C is a simplicial object in C, that is, a functor ∆o → C, with
some additional structure. This structure can be encoded in a category Λ, called Connes’s
cyclic category, so that a cyclic object in C is a functor Λo → C.

Definition 3.1.1. The category Λ, called Connes’s cyclic category, is the category with the
same elements [n] as in ∆, and generating maps

δi : [n] → [n− 1], 0 ≤ i ≤ n, n > 0,

σi : [n] → [n+ 1], 0 ≤ i ≤ n+ 1.

33
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subject to the same relations as in ∆, but with an additional map τn : [n]→ [n] satisfying the
cyclic relations

τnδi = δi−1τn−1, for 1 ≤ i ≤ n, τnδ0 = δn,

τnσi = σi−1τn+1, for 1 ≤ i ≤ n, τnσ0 = σn(τn+1)2,

(τn)n+1 = id.

Remark 3.1.2. The category Λ contains ∆ as a subcategory, and we write j : ∆ → Λ for
the inclusion.

Functors X : Λo → C are called cyclic objects of C, and they form a category written as
Cc . As for ∆o, we denote the generating maps of Λo by δi, σi, and τn, and the maps induced
in C by a functor X are denoted di, si, and tn, respectively.

Analogous to the standard simplicial sets in ∆ there are cyclic sets Λn called the standard
cyclic sets ([DHK85, Section 2]). These are defined by

Λn[k] = homΛo([k], [n]),

and they have similar properties as the standard simplicial sets ∆n. We get a natural Yoneda-
isomorphism

homSc(Λ[n], X) ∼= homS(∆[n], X) ∼= Xn.

Cyclic homology of modules. Let X be a cyclic object in the category k-mod of k-
modules. Then there is an associated bicomplex

...
...

...
...

X2

b
?
�
1− t

X2

−b′
?
�
N

X2

b
?
�
1− t

X2

−b′
?
�
N

X1

b
?
�
1− t

X1

−b′
?
�
N

X1

b
?
�
1− t

X1

−b′
?
�
N

X0

b
?
�
1− t

X0

−b′
?
�
N

X0

b
?
�
1− t

X0

−b′
?
�
N

,

where b = Σn
i=1di, b

′ =
∑n−1

i=1 di, N = Σn
i=0t

i, and the homology groups of this bicomplex are
called the cyclic homology groups of X ([Lod97]).

Definition 3.1.3. Let X be a cyclic object in the category of k-modules. The homology of the
bicomplex associated as above is called the cyclic homology of X, and written as HC∗(X).

It can be shown that the columns involving b′ of this complex are exact, and that we
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therefore get the same homology from the bicomplex

L2
�
B

L1
�
B

L0

L1

b
?
�
B

L0

b
?

L0.

b
?

Here B = (−1)n+1(1 − tn+1)sN , where s = sn+1 = (−1)n+1tn+1sn (see [Lod97]). This
complex is called the Bb-complex associated to X, and we denote it by B(X).

Remark 3.1.4. We observe that we have a short exact sequence

0→ X → B(X)→ B(X)[−2]→ 0,

where B(X)[−2] is the Bb-complex shifted 2 places to the right and X is the Moore complex
of X. The resulting long exact sequence is called Connes’s exact sequence:

· · · - πnH(X) - πnHC(X) - πn−2HC(X) - πn−1H(X) - · · · .

If we filter the Bb-complex by columns, we get the following spectral sequence:

Lemma 3.1.5 ([LQ84, Theorem 1.9]). There is a spectral sequence abutting to HCn(X), with
E1
pq = πq−pL, and with d1 : πq−pX → πq−p+1L induced by Connes’s operator B.

Example 3.1.6. The simplicial module given by

HH(A)n = A⊗n+1

has a cyclic structure, given by

t(a0, a1, ..., an) = (ana0, ..., an−1).

This can be shown to make HH(A) into a cyclic module, and the cyclic homology of HH(A)
is called the cyclic homology of the algebra A, and it is denoted by HC∗(A) ([Con85]).

Cyclic homology of functors. Let F be the category of finite sets and set maps. A
skeleton for this category is given by the objects n = {0, ..., n}. The simplicial circle S1 :
∆o → F has a cyclic structure, making it a cyclic object in F (see [Lod97, Section 6.4]). So,
as in the Hochschild homology case, we can associate cyclic homology groups to any functor
F : F → k-mod by composition with S1.

Definition 3.1.7. Let F : F → k-mod be a functor. The cyclic homology associated to the
cyclic k-module

Λo
S1

−→ F F−→ k-mod

is called the cyclic homology of the functor F , and written as HC∗(F ).
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The cyclic homology of F is the homology of the double complex

F (2) �
B

F (1) �
B

F (0)

F (1)

b
?
�
B

F (0)

b
?

F (0).

b
?

Writing HH(F ) for the Hochschild complex associated to F , we can write the above double
complex as

HH(F )← ΣHH(F )← Σ2HH(F )← · · · ,

where ΣnHH(F ) is the Hochschild complex shifted by n.

Similarly as for the category Γ of finite pointed sets (see 2.1), there are functor categories
F −mod and mod−F . There are projective generators,

Fn := k[HomF (−, n)],

Fn := k[HomF (n,−)]

of these two categories, and a bifunctor −⊗F − such that

F (n) ∼= F ⊗F Fn

F (n) ∼= Fn ⊗F F.

Therefore, to calculate the cyclic homology of a functor F : F → k-mod, we can calculate
the homology of the bicomplex L[1] given by

F2
� F1

� F0

F1

?
� F0

?

F0

?

tensored with F over F .

We have

Fn = k[homF (−, n)],

so the homology of L[1](m) is the cyclic homology of k[S1 × · · · × S1] ((m+ 1) times).

Example 3.1.8. If we let the functor F be the Loday functor L(A), we get exactly the cyclic
homology of the algebra A in the sense of Connes (see Example 3.1.6).
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3.1.1 Higher Order Cyclic Homology

The n-torus Tn = S1 × · · · × S1 is an n-cyclic object in F , meaning that it is a functor

Tn : Λo × · · · × Λo → F .

To any functor Λo×· · ·×Λo → k-mod we can associate a 2n complex by using the n simplicial
and the n cyclic directions. As an example, the 4-complex associated to the composition

Λo × · · · × Λo
Tn

−→ F F−→ k-mod

is

Σ2HH [2](F ) �
B2

Σ3HH [2](F ) �
B2

Σ4HH [2](F )

ΣHH [2](F )

B1
?

�
B2

Σ2HH [2](F )

B1
?

�
B2

Σ3HH [2](F )

B1
?

HH [2](F )

B1
?

�
B2

ΣHH [2](F )

B1
?

�
B2

Σ2HH [2](F ).

B1
?

Definition 3.1.9. Let F : F → k-mod be a functor. The n-th order cyclic homology of F is
the homology of the 2n-complex we get from the composition

Λo × · · · × Λo
Tn

−→ F F−→ k-mod .

We write HC
[n]
∗ (F ) for this homology.

Remark 3.1.10. The complexes HH [n](F ) are thought of as n-complexes. That is, we con-
sider F (Tn) as an n-simplicial object of k-mod, see Remark 1.2.3. The Hochschild boundaries
we get from the different simplicial directions are denoted by b1, ..., bn.

We have
F (m1 × · · · ×mn) ∼= (Fm1 ⊗ · · · ⊗ Fmn)⊗F F,

so we can calculate this homology by finding the homology of a 2n-complex L[n]. The complex
L[2] is the 4-complex

Σ2F [2] �
B2

Σ3F [2] �
B2

Σ4F [2]

ΣF [2]

B1
?
�
B2

Σ2F [2]

B1
?
�
B2

Σ3F [2]

B1
?

F [2]

B1
?
�
B2

ΣF [2]

B1
?
�
B2

Σ2F [2].

B1
?

The (i1, ..., in)th entry in the n-complex L[n] is

F [n]
i1,...,in

= k[homF (i1,−)]⊗ · · · ⊗ k[homF (in,−)],

so the homology of L[n](m) is the n-th cyclic homology of the cyclic module k[Tn × · · · × Tn]
((m+ 1)-times). This will be important in Chapter 4.
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The cyclic homology of an algebra A is now defined as follows:

Definition 3.1.11. Let A be a k-algebra. The higher order cyclic homology associated to the
composition

Λo × · · · × Λo
Tn

−→ F L(A)−→ k-mod

is called the n-th order cyclic homology of the algebra A, and is denoted by HC
[n]
∗ (A).

3.2 From Hochschild Homology to Cyclic Homology

We now turn to a different description of cyclic homology, namely as the homotopy orbits of
Hochschild homology under cyclic actions.

3.2.1 G-Spaces and Homotopy Orbits

Let G be a simplicial group. A G-space is a simplicial space X ∈ S with a (left) action of G,
i.e. a simplicial space X with a map

µ : G×X → X,

such that the diagrams

G×G×X
1× µ
- G×X

G×X

m× 1
?

µ
- X

µ
?

and

X

G×X

i
?

µ
- X

1
X

-

commute. Here m is the multiplication in G, and i(X) = (e,X). A simplicial space with a
right action of G will be called a Go-space. We write SG for the category of G-spaces. This is
a simplicial model category in the sense of Quillen [Qui67] (see [GJ99, Theorem V.2.3]). The
product of a G-space X and a Go-space Y is the space

Y ×G X = Y ×X/((yg, x) ∼ (y, gx)).

Definition 3.2.1. Let X be a G-space. The homotopy orbit space XhG of X under the action
of G is the space

XhG = EG×G X,

where EG is a contractible space with free G-action (see e.g. [GJ99, Definition 3.6]).



3.2 From Hochschild Homology to Cyclic Homology 39

3.2.2 Cyclic Sets and T 1-Spaces

According to [DHK85], there is a Quillen equivalence (in the sense of [Qui67]) between the
category T 1-Top of spaces with an action of T 1 and the category Sc of cyclic sets. We will
start by giving a quick résumé of the results in [DHK85] and show how the results apply to
Hochschild homology. See also [DGM, Chapter 3].

As before, Sc is the category of cyclic objects in the category S. The inclusion j : ∆o → Λo

induces a forgetful functor j∗ : Sc → S. In [DHK85], Dwyer, Hopkins, and Kan show that
there is a functor Lc that fits into the diagram

T 1 − Top

Sc

L
c -

Top,

U

?

|j ∗
(−

)|
-

where T 1 − Top is the category of topological spaces with an action of the circle group T 1

and U is the forgetful functor. The functor |j∗(−)| is the realization functor taking an object
X ∈ Sc to the realization |j∗X| of the simplicial set j∗X. From now on, we will suppress the
forgetful functor j∗ from the realization notation and just write the realization of X ∈ Sc as
|X|. The functor Lc is part of an adjunction-pair

Lc : Sc -� T 1 − Top : Rc,

where Rc is the functor defined by

Rc = hom(LcΛ[−],−) : T 1 − Top→ Sc.

This pair gives a Quillen equivalence between T 1 − Top and Sc ([DHK85, Theorem 4.2]).

In particular, if we have a cyclic module M , we can look at the homotopy orbits of |M |
under the action of T 1, and we now have all the ingredients to understand the statement of
the theorem quoted in the introduction.

Theorem 3.2.2. Let M be a cyclic module. Then there is a canonical isomorphism

HCqM ∼= πq|M |hS1 .

Following [DGM], we will show how this theorem follows as a special case of a theorem of
Jones and a filtration of the homotopy orbits of |M | under the action of T 1. The filtration
will be studied in the next section.

Let M be a cyclic module, and write ϕ : C∗(M) → C∗ sin |M | for the natural chain map.
According to the previous results of this section, |M | is a T 1-space, and we write µ : T 1 ×
|M | → |M | for the T 1-action. Write J : Cn sin |M | → Cn+1 sin |M | for the map defined by
J(x) = (−1)|x|µ∗(z ∗ x), where z ∗ x is the shuffle product of x with the fundamental 1-cycle
in C∗ sin |S1|. In other words, it is the action of T 1 on the realization |M |. The theorem of
Jones is as follows:
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Theorem 3.2.3 ([Jon87, Theorem 4.1]). There is a natural map h : C∗(M) → C∗ sin |M |
that raise the degree by two and satisfies the formula dh− hb = Jϕ− ϕB.

As in [Jon87], we think of the theorem as saying that the diagram

C∗(M)
ϕ
- C∗ sin |M |

C∗+1(M)

B
?

ϕ
- C∗+1 sin |M |

J
?

commutes up to natural chain homotopy, even though this is not exactly the case.

In the next section, we will show how the map J , or the T 1-action, corresponds to the
differential in the E1-sheet of a spectral sequence converging to π∗|M |hT 1 . Then Jones’s
theorem, together with Lemma 3.1.5, will give us Theorem 3.2.2.

3.2.3 The Bb Complex and the Skeleton Filtration of S1

We start by showing that the spectral sequence in Lemma 3.1.5 that followed from the filtra-
tion of the Bb-complex by columns has E1-sheet naturally isomorphic to the E1-sheet of the
spectral sequence we get from the skeleton filtration of ET 1, and that the differentials agree
on homology. From this, Theorem 3.2.3 will follow.

Filtration of ET 1. A model for the space ET 1 is
⋃
n≥0 S

2n+1, where T 1 acts on S2n−1 ⊂ Cn

by complex multiplication in each coordinate. The space ET 1 is filtered via the skeleton
filtration

∗ ⊂ S1 ⊂ S3 ⊂ · · · ⊂ S2n−1 ⊂ S2n+1 ⊂ · · · ⊂ S∞ = ET 1,

where the inclusion S2n−1 ⊂ S2n+1 is induced by the inclusion of Cn−1 into Cn as the first
coordinates. There is a T-isomorphism

S2n+1/S2n−1 ∼=→ T 1
+ ∧ S2n,

given on representatives by (z0, ..., zn) 7→ ( zn
|zn| ∧ [z0, .., zn]), where S2n is thought of as

CPn/CPn−1. From the filtration we get on ET 1
+ ∧T 1 X, we get a spectral sequence, called

the T-homotopy orbit spectral sequence, that has the following description:

Lemma 3.2.4 ([Hes96, Lemma 1.4.2], [DGM, Corollary 3.1.2]). Let X be a T 1-space. The
E2 sheet of the spectral sequence for XhT 1 comes from an E1 sheet with

E1
p,q = πq−pX, q ≥ p ≥ 0,

and where the differentials

d1
p,q : E1

p,q = πq−pX → πq−p+1X = E1
p−1,q

are induced by S1∧X ⊂ S1∧X ∨S0∧X ' T+∧X
µ→ X, where the last map is the T-action.
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The E1-sheet of the spectral sequence can be written as

· · · · · · · · ·

�
d1

2,−1
π2−(−1)

�
d1

2,0
π2−0

�
d1

2,1
π2−1

�
d1

2,2

�
d1

1,−1
π1−(−1)

�
d1

1,0
π1−0

�
d1

1,1
π1−1

�
d1

0,−1
π0−(−1)

�
d1

0,0
π0−0

�
d1
−1,−1

π−1−(−1).

Since the map J in Theorem 3.2.3 is the T 1-action, we get the following theorem:

Theorem 3.2.5 ([Jon87]). Let M be a cyclic module. The T 1-action and the B-maps agree
on homotopy groups in the sense that the diagram

π∗M
∼=- π∗|M |

π∗+1M

B
? ∼=- π∗+1|M |

d1

?

commutes, where d1 is the map induced by the T 1-action. The notation |M | means the
realization of the simplicial set underlying M , as before.

Theorem 3.2.2 now follows easily.

Proof of Theorem 3.2.2. Let M be a cyclic module. From Lemma 3.1.5 we have the
spectral sequence

E1
pq = πq−pM ⇒ HCp+qM,

while from Lemma 3.2.4, we have the spectral sequence

E1
pq = πq−pM ⇒ πp+q|M |hT 1 .

By Theorem 3.2.5, the differentials agree, so the result follows.

3.2.4 Higher Dimensions

We make the following observation: Let X be a G1×G2-space, where G1 and G2 are simplicial
groups. We have

E(G1 ×G2)×(G1×G2) X ∼= EG2 ×G2 (EG1 ×G1 X),

so the homotopy orbits can be calculated iteratively:

Xh(G1×G2)
∼= (XhG1)hG2 .

This gives an immediate generalization of the result in the previous section to higher dimen-
sions.
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We recall from Section 3.2 that the n-th order cyclic homology of an algebra A is the cyclic
homology associated to the n-cyclic module

Λo × · · · × Λo
Tn

−→ F L(A)−→ k-mod .

That is, it is the homology of a 2n-complex whose differentials are b1, ..., bn and B1, ..., Bn.

Theorem 3.2.6. Let A be a k-algebra. Then

HC
[n]
∗ (A) ∼= π∗|A⊗T

n |hTn .

Proof. We prove this in the case n = 2. The general case follows.

The complex C∗(A
⊗T 2

)hT 2) can be written as C∗ sin(|HH [2]
1 (A)|hS1 |hS1), where HH

[2]
1 (A)

denotes the simplicial set [q] 7→ |AS1
q×S1 |. This complex is quasi-isomorphic to

Tot(C∗ sin |HH [2]
1 (A)|, b2, B2)

by the results of the previous section. But

Tot(C∗ sin |HH [2]
1 (A)|, b2, B2) ' Tot(C∗([q] 7→ C∗(A

⊗S1
q×S1

, b1, B2))),

which completes the proof.

Remark 3.2.7. Negative cyclic homology of a cyclic module M , HC−∗ , can be shown to
correspond to the homotopy of the S1-homotopy fixed points of |M | under the action of S1:

|M |hS1
= MapS1(ES1

+, |M |),

so one could consider the n-th negative cyclic homology of M as π∗|M |hT
n
.
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Decomposition of Cyclic Homology

Loday ([Lod89]) has shown that for each functor F ∈ mod−F , there is a canonical decom-
position

HCn(F ) ∼=
n⊕
i=1

HC(i)
n (F ).

As for Hochschild homology, Pirashvili generalized this result in [Pir00b] by constructing a
degenerate spectral sequence converging to cyclic homology. We will generalize his result by
constructing a degenerate spectral sequence converging to higher order cyclic homology.

4.1 Pirashvili’s Decomposition

We recall from Section 3.1 that cyclic homology of a functor F can be calculated by finding
the homology of the bicomplex L[1]:

F2
� F1

� F0

F1

?
� F0

?

F0,
?

tensored with F over F . More generally, the n-th order cyclic homology of F can be calculated
by finding the homology of a 2n-complex L[n] tensored with F over F .

In [Pir00b], Pirashvili calculates the homology of L[1] as

Hi(L
[1]) = Λit̄,

where t̄ is the right F-module defined below. We will expand Pirashvili’s argument to L[n] in
Lemma 4.1.3.

Remark 4.1.1. Let ν : F → Γ be the functor that adds a disjoint basepoint. Then, for any
functor F : Γ→ k-mod, we get a functor ν∗F : F → k-mod by precomposition.
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As in [Pir00b, Section 3.4], we let F0 → ν∗t be the canonical transformation that is defined
on n as the homomorphism

λ 7→ λn ∈ ν∗t(n+) = homSets(n, k),

where λn : S → k is the constant map with value λ. The F-module t̄ is now defined as the
object fitting in the exact sequence

0→ F0 → ν∗t→ t̄→ 0.

To calculate the homology of L[n], we will need a result from [Lod97]. The graded comodule
k[u] in the following theorem is isomorphic to HC∗(k), and |u| = 2 (see [Lod97, Section 4.4]):

Theorem 4.1.2 ([Lod97, Proposition 4.4.8]). Let A and A′ be two k-algebras. Suppose that

HC∗(A
′) = k[u]⊗ U∗ ⊕ V∗,

where U∗ and V∗ are graded trivial k[u]-comodules. Then

HC∗(A⊗A′) = HC∗(A)⊗ U∗ ⊕ π∗HH(A)⊗ V∗.

Lemma 4.1.3. The homology of the complex L[n] is

Hr(L
[n]) ∼=

⊕
m1+···+mn=r

Λm1 t̄⊗ · · · ⊗ Λmn t̄.

Proof. From Section 3.1 we have that the homology of L[n](m) is the n-th cyclic homology of
the cyclic module k[Tn × · · · × Tn] ((m + 1) Tn-factors). Write (Tn)m+1 := Tn × · · · × Tn.
By Theorem 3.2.6,

HC
[n]
∗ (k[(Tn)m+1]) ∼= π∗(ET

n ×Tn (Tn)m+1).

But ETn ×Tn (Tn)m+1 ∼= ES1 ×S1 (S1)m+1 × · · · × ES1 ×S1 (S1)m+1, so by Theorem 3.2.6
again,

HC
[n]
∗ (k[(Tn)m+1]) ∼= π∗(ES

1 ×S1 (S1)m+1)⊗ · · · ⊗ π∗(ES1 ×S1 (S1)m+1)
∼= HC∗(k[(S1)m+1])⊗ · · · ⊗HC∗(k[(S1)m+1]).

Thus, it is enough to find the cyclic homology of k[(S1)m+1]. This has been done by Pirashvili
in [Pir00b, Section 3.4]. We repeat the argument here.

We have
HC∗(k[S1]) ∼= H∗(ES

1 ×S1 S1) ∼= k.

Hence, by Theorem 4.1.2, we get that

HC∗(k[S1 × S1]) ∼= HC∗(k[S1]⊗ k[S1]) ∼= HH∗(k[S1]) ∼= Λ∗(x),

where x has degree 1. By iterating this result, we get that

HC∗(k[(S1)n]) ∼= Λ∗(x1, ..., xn),

where each xi has degree 1.
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This shows that

H∗(L
[n](m)) ∼= Λ∗(x

(1)
1 , ..., x(1)

m )⊗ · · · ⊗ Λ∗(x
(n)
1 , ..., x(n)

m ),

all x
(j)
i of degree 1, and the result now follows from a similar argument as in Lemma 2.1.6

(see [Pir00b, Section 4.4]).

Proposition 4.1.4. Let F be a left F-module. Then there exists a degenerate spectral se-
quence

E2
pq =

⊕
m1+···+mn=q

TorFp (Λm1 t̄⊗ · · · ⊗ Λmn t̄, F )⇒ HC
[n]
p+q(F ),

with
HC [n]

r (F ) ∼=
⊕

m1+···+mn+p=r

TorFp (Λm1 t̄⊗ · · · ⊗ Λmn t̄, F ).

Proof. The existence of the spectral sequence follows the calculation in Lemma 4.1.3 and
from the F-version of Proposition 2.1.2 (see Remark 2.1.3), by applying the proposition to
the total complex of L[n]. More precisely, we put C∗ = TotL[n] and consider the spectral
sequence

E2
pq = TorFp (Hq(C∗), F )⇒ Hp+q(C∗ ⊗F F ) ∼= HC

[n]
p+q(F ).

The spectral sequence has the desired form by Lemma 4.1.3.
To show that the spectral sequence degenerates, one shows that

Extimod−F (Λm1 t̄⊗ · · · ⊗ Λmk t̄,Λm1 t̄⊗ · · · ⊗ Λmn t̄) = 0

if k < n and i ≥ 2, but for this, it is enough to show that Extimod−F (Λnt̄,Λmt̄) = 0, and this
is done in the proof of [Pir00b, Theorem 3.5].
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